Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

Additive Manufacturing

Discipline
Institution
Publication
Publication Type

Articles 1 - 30 of 37

Full-Text Articles in Engineering

The Effect Of Incorporating End-User Customization Into Additive Manufacturing Designs, Jonathan D. Ashley Dec 2018

The Effect Of Incorporating End-User Customization Into Additive Manufacturing Designs, Jonathan D. Ashley

Graduate Theses and Dissertations

In the realm of additive manufacturing there is an increasing trend among makers to create designs that allow for end-users to alter them prior to printing an artifact. Online design repositories have tools that facilitate the creation of such artifacts. There are currently no rules for how to create a good customizable design or a way to measure the degree of customization within a design. This work defines three types of customizations found in additive manufacturing and presents three metrics to measure the degree of customization within designs based on the three types of customization. The goal of this work …


Utilizing 3d Printed Analogue Soils To Investigate Specimen Size Effects In Triaxial Testing, Claire Louise Stewart Dec 2018

Utilizing 3d Printed Analogue Soils To Investigate Specimen Size Effects In Triaxial Testing, Claire Louise Stewart

Graduate Theses and Dissertations

Triaxial testing is one of the fundamental laboratory tests used in geotechnical engineering to determine strength parameters, such as shear strength and friction angle. Investigating the minimum representative elementary volume (REV) can verify the independence of size effects on strength parameters and ensure that the scaled laboratory tests results are consistent, repeatable, and representative of field conditions. Although, REV has been studied for many applications, there is disagreement within geotechnical engineering of a minimum particle diameter to specimen diameter to minimize the size effects related to the REV in consolidated drained (CD) triaxial tests. This research study compared the strength …


Model-Based Predictive Analytics For Additive And Smart Manufacturing, Zhuo Yang Oct 2018

Model-Based Predictive Analytics For Additive And Smart Manufacturing, Zhuo Yang

Doctoral Dissertations

Qualification and certification for additive and smart manufacturing systems can be uncertain and very costly. Using available historical data can mitigate some costs of producing and testing sample parts. However, use of such data lacks the flexibility to represent specific new problems which decreases predictive accuracy and efficiency. To address these compelling needs, in this dissertation modeling techniques are introduced that can proactively estimate results expected from additive and smart manufacturing processes swiftly and with practical levels of accuracy and reliability. More specifically, this research addresses the current challenges and limitations posed by use of available data and the high …


The Influence Of Build Parameters On The Compressive Properties Of Selective Laser Melted 304l Stainless Steel, Okanmisope Fashanu, Mario F. Buchely, R. Hussein, S. Anandan, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, M. A. Walker Aug 2018

The Influence Of Build Parameters On The Compressive Properties Of Selective Laser Melted 304l Stainless Steel, Okanmisope Fashanu, Mario F. Buchely, R. Hussein, S. Anandan, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, M. A. Walker

Materials Science and Engineering Faculty Research & Creative Works

Process parameters used during Selective Laser Melting (SLM) process have significant effects on the mechanical properties of the manufactured parts. In this study, the influence of two build parameters (build orientation and hatch angle) on the compressive properties of 304L stainless steel was evaluated. SLM 304L samples were manufactured using three hatch angles, 0°, 67°,105° and two orientations, z-direction and x-direction, and tested using a compression frame according to ASTM E9-09. Bulk density was measured according to ASTM C373-17 before compression. Properties evaluated were the bulk density, yield strength, strength at 15% plastic-strain and strength at 30% plastic-strain. Results showed …


Additive Manufacturing Of Metal Functionally Graded Materials: A Review, Yitao Chen, Frank W. Liou Aug 2018

Additive Manufacturing Of Metal Functionally Graded Materials: A Review, Yitao Chen, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Functionally graded materials (FGMs) have attracted a lot of research interest due to their gradual variation in material properties that result from the non-homogeneous composition or structure. Metal FGMs have been widely researched in recent years, and additive manufacturing has become one of the most important approaches to fabricate metal FGMs. The aim of this paper is to review the research progress in metal FGMs by additive manufacturing. It will first introduce the unique properties and the advantages of FGMs. Then, typical recent findings in research and development of two major types of metal additive manufacturing methods, namely laser metal …


Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu Jul 2018

Design Of Lattice Structures With Graded Density Fabricated By Additive Manufacturing, Wenjin Tao, Yong Liu, Austin T. Sutton, Krishna C. R. Kolan, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Lattice structures fabricated by Additive Manufacturing (AM) processes are promising for many applications, such as lightweight structures and energy absorbers. However, predicting and controlling of their mechanical behaviors is challenging due to the complexity of modeling and the uncertainties exist in the manufacturing process. In this paper, we explore the possibilities enabled by controlling the local densities. A set of lattice structures with different density gradients are designed using an implicit isosurface equation, and they are manufactured by Selective Laser Melting (SLM) process with 304L stainless steel. Finite element analysis and compression test are used to evaluate their mechanical properties. …


Material Properties Of Laser Powder Bed Fusion Processed 316l Stainless Steel, Steven Keckler Jul 2018

Material Properties Of Laser Powder Bed Fusion Processed 316l Stainless Steel, Steven Keckler

Graduate Theses & Non-Theses

Laser powder bed fusion additive manufactured 316L stainless steel specimens were evaluated to establish a baseline for future research in determining an optimized energy density and build orientation. Test specimens were printed at various energy densities. At each energy density, tensile and fatigue specimens were printed at 0o (longitudinal), 45o, and 90o (transverse) orientation to the build plate. Tensile and high cycle fatigue tests were performed then representative fracture surfaces were analyzed. The apparent melt track and dendrite size were evaluated using grain analysis software. Static loading of the tensile specimens showed a marginal difference in UTS for specimens with …


Development Of 3-D Printed Hybrid Packaging For Gaas-Mems Oscillators Based On Piezoelectrically-Transduced Zno-On-Soi Micromechanical Resonators, Di Lan Jun 2018

Development Of 3-D Printed Hybrid Packaging For Gaas-Mems Oscillators Based On Piezoelectrically-Transduced Zno-On-Soi Micromechanical Resonators, Di Lan

USF Tampa Graduate Theses and Dissertations

Prior research focused on CMOS-MEMS integrated oscillator has been done using various foundry compatible integration techniques. In order to compensate the integration compatibility, MEMS resonators built on standard CMOS foundry process could not take full advantage of highest achievable quality factor on chip. System-in-package (SiP) and system-on-chip (SoC) is becoming the next generation of electronic packaging due to the need of multi-functional devices and multi-sensor systems, thus wafer level hybrid integration becomes the key to enable the full assembly of dissimilar devices. In this way, every active circuit and passive component can be individually optimized, so do the MEMS resonators …


Development Of An Additive Manufacturing Compression Molding Process For Low Cost In-House Prototyping, Grant Forrester Warden Jun 2018

Development Of An Additive Manufacturing Compression Molding Process For Low Cost In-House Prototyping, Grant Forrester Warden

Industrial and Manufacturing Engineering

Composite parts can be manufactured using various processes. Generally, a mix of resin and fiber is formed into the desired geometry using a mold and pressure. One process used by Dr. Joseph Mello in his research is known as compression molding. Compression molds are generally made from large billets of aluminum or stainless steel, are machined by a CNC mill, and are then hand-finished with polishes and mold preparation products. This process is expensive, requires large machinery and experienced operators, and introduces long lead times relative to the design cycle of the part being manufactured. The nature of Dr. Mello's …


The Effects Of Varying Composition And Build Direction On Direct Metal Deposition Fabricated Inconel 718, Abigail P. Nilan, Jessica M. Fordham Jun 2018

The Effects Of Varying Composition And Build Direction On Direct Metal Deposition Fabricated Inconel 718, Abigail P. Nilan, Jessica M. Fordham

Materials Engineering

Inconel 718 (IN718) is a popular wrought superalloy, and is currently being investigated for additive manufacturing (AM) applications in the aerospace industry. However, overaging and the presence of microcracks have caused a significant reduction in properties. The purpose of this study is to meet or exceed the mechanical properties of wrought IN718 by varying the composition and build direction of the AM alloy. Alternative compositions were selected with Oerlilon Metco’s Rapid Alloy Development (RAD) software, and differ in niobium content, which increases the fraction of the primary strengthening phase (γʺ). Direct metal deposition (DMD) was used to fabricate the samples, …


An Evaluation Of Ultrasonic Shot Peening And Abrasive Flow Machining As Surface Finishing Processes For Selective Laser Melted 316l, Rhys Gilmore Jun 2018

An Evaluation Of Ultrasonic Shot Peening And Abrasive Flow Machining As Surface Finishing Processes For Selective Laser Melted 316l, Rhys Gilmore

Master's Theses

Additive Manufacturing, and specifically powder bed fusion processes, have advanced rapidly in recent years. Selective Laser Melting in particular has been adopted in a variety of industries from biomedical to aerospace because of its capability to produce complex components with numerous alloys, including stainless steels, nickel superalloys, and titanium alloys. Post-processing is required to treat or solve metallurgical issues such as porosity, residual stresses, and surface roughness. Because of the geometric complexity of SLM produced parts, the reduction of surface roughness with conventional processing has proven especially challenging. In this Thesis, two processes, abrasive flow machining and ultrasonic shot peening, …


Defect Detection In Selective Laser Melting, Moira Foster Jun 2018

Defect Detection In Selective Laser Melting, Moira Foster

Master's Theses

Additively manufactured parts produced using selective laser melting (SLM) are prone to defects created during the build process due to part shrinkage while cooling. Currently defects are found only after the part is removed from the printer. To determine whether cracks can be detected before a print is completed, this project developed print parameters to print a test coupon with inherent defects – warpage and cracking. Data recorded during the build was then characterized to determine when the defects occurred.

The test coupon was printed using two sets of print parameters developed to control the severity of warpage and cracking. …


Mechanical Characterization Of Selectively Laser Melted 316l Stainless Steel Body Centered Cubic Unit Cells And Lattice Of Varying Node Radii And Strut Angle, Christopher James Hornbeak Jun 2018

Mechanical Characterization Of Selectively Laser Melted 316l Stainless Steel Body Centered Cubic Unit Cells And Lattice Of Varying Node Radii And Strut Angle, Christopher James Hornbeak

Master's Theses

An experimental study of several variants of radius and strut angle of the body centered cubic unit cell was performed to determine the mechanical properties and failure mechanisms of the mesostructure. Quasi static compression tests were performed on an Instron® universal testing machine with a 50kN load cell at 0.2mm/min. The test samples were built using a SLM Solutions 125 selective laser melting machine with 316L stainless steel. Test specimens were based on 5mm cubic unit cells, with a strut diameter 10% of the unit cell size, with skins on top and bottom to provide a cantilever boundary constraint. Specimens …


Microheater Array Powder Sintering (Maps) For Printing Flexible Electronics, Nicholas Holt May 2018

Microheater Array Powder Sintering (Maps) For Printing Flexible Electronics, Nicholas Holt

Graduate Theses and Dissertations

Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. MAPS operation relies on establishing a precision air gap of a few microns between an array of microheaters, which can reach temperatures of 600°C, and a layer of conductive ink which can be deposited onto a flexible substrate. This system presents challenges, being: the fabrication of a microheater that can reach suitable temperatures in …


Reducing Stress In 3d Printed Parts Made With Laser Engineered Net Shaping, Shaun Ross Whetten Apr 2018

Reducing Stress In 3d Printed Parts Made With Laser Engineered Net Shaping, Shaun Ross Whetten

Mechanical Engineering ETDs

Thermal cycling and repeated melting/solidification cycles characteristic of 3D metal printing processes causes buildup of residual stress in 3D printed parts. Using laser engineered net shaping (LENS®), residual stresses are formed leading to deformation and possible cracking of the 3D printed metal components. The LENS process offers opportunities for rapid prototyping, alternative manufacturing processes, and repair of worn/broken components so it is important to be able to minimize the effects of residual stress. Work was performed to understand the benefit of substrate heating on reducing residual stress in metal parts made using the LENS process. Substrate deformation, and destructive methods …


Design And Development Of A Multifunctional Surgical Device For Ground And Space-Based Surgical Applications., Brooke Elaine Barrow Apr 2018

Design And Development Of A Multifunctional Surgical Device For Ground And Space-Based Surgical Applications., Brooke Elaine Barrow

Electronic Theses and Dissertations

With the possibility of longer ventures into space, NASA will face many new medical challenges. The ability to surgically treat trauma and other disorders in reduced gravity requires reliable wound access, containment, and visualization. In collaboration with Carnegie Mellon University, the University of Louisville is currently developing the AISS (Aqueous Immersion Surgical System) to increase efficiency and control of the operative field in space-based surgeries. Reliable wound access and containment is achieved by placing a transparent wound-isolation dome securely over the wound-site and pressurizing it with a saline solution. Leak-free trocars provide access ports for various surgical instruments. This system …


Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey Apr 2018

Evaluation Of Metallurgical And Mechanical Properties Of Alsi10mg Produced By Selective Laser Melting, Luke J. Suttey

Graduate Theses & Non-Theses

Selective laser melting (SLM) additive manufacturing (AM) of metal powders has long been a focus in the study of AM due to the possibility of weight reduction, complex shape formation, and production cost savings. Although applicable to a variety of metals SLM AM of the AlSi10Mg alloy was studied in an attempt to characterize the effect of processing parameter and build angle variation on the final microstructural, fractographic, and mechanical properties of parts produced without any thermal post-processing techniques. Research was conducted on five build angles (0°, 30°, 45°, 60°, and 90°), and three Global Energy Densities (GED) (37.15, 45.39, …


Characterization Of Process Induced Defects In Laser Powder Bed Fusion Processed Alsi10mg Alloy, Edward Stugelmayer Apr 2018

Characterization Of Process Induced Defects In Laser Powder Bed Fusion Processed Alsi10mg Alloy, Edward Stugelmayer

Graduate Theses & Non-Theses

Additive manufacturing using laser powder bed fusion (AM-LPBF) methods have recently experienced rapid growth and development, having the potential to replace manufacturing by plastic deformation, precision machining, or casting. AM offers advantages such as the freedom to design highly complex geometries, time and cost savings through material usage efficiency and shortened production cycles, and the potential for improved mechanical properties. Process induced defects, however, result in degradation and scattering of mechanical properties and hinder the widespread adoption of AM-LPBF in industry. This investigation focuses on the effects of varying energy density and build orientation on the evolution of process induced …


Supporting Engineering Design Of Additively Manufactured Medical Devices With Knowledge Management Through Ontologies, Thomas Hagedorn Mar 2018

Supporting Engineering Design Of Additively Manufactured Medical Devices With Knowledge Management Through Ontologies, Thomas Hagedorn

Doctoral Dissertations

Medical environments pose a substantial challenge for engineering designers. They combine significant knowledge demands with large investment for new product development and severe consequences in the case of design failure. Engineering designers must contend with an often-chaotic environment to which they have limited access and familiarity, a user base that is difficult to engage and highly diverse in many attributes, and a market structure that often pits stakeholders against one another. As medical care in general moves towards personalized models and surgical tools towards less invasive options emerging manufacturing technologies in additive manufacturing offer significant potential for the design of …


Additive Manufacturing With High Density Polyethylene: Mechanical Properties Evaluation, Calvin Wampol Jan 2018

Additive Manufacturing With High Density Polyethylene: Mechanical Properties Evaluation, Calvin Wampol

Electronic Theses and Dissertations

High-density polyethylene is a common recyclable plastic that has a large potential as an additive manufacturing material due its economic and environmental benefits. However, high-density polyethylene has undesirable thermal properties that cause the material to shirk and not adhere to the printing bed during an additive manufacturing processes. Researchers have attempted to combat these thermal properties but have only created novel filaments of high-density polyethylene without being able to create 3D printed specimens for mechanical property testing. This paper presents several methods to create 3D printed specimens with pure high-density polyethylene filament on a fused filament fabrication type 3D printer. …


Development Of Material For 3d Printed Habitats With Extraplanetary Applications, Taylor Wait Jan 2018

Development Of Material For 3d Printed Habitats With Extraplanetary Applications, Taylor Wait

Electronic Theses and Dissertations

3D printing, also called Additive Manufacturing, has increasingly become a focus for research because of the potential to replace complicated assemblies or complex parts with a single printed item. The space industry is very interesting in studying 3d printing with parts being tested and used on rockets, a 3D printer being installed at the International Space Station and is being developed for use in manned exploration of extraplanetary bodies to build habitats. To encourage teams from around the world to develop technologies and materials for autonomous habitat construction using minimal Earth exports, NASA created the 3D Printed Habitat Challenge. NASA …


A New Approach To Multiplanar, Real-Time Simulation Of Physiological Knee Loads And Synthetic Knee Components Augmented By Local Composition Control In Fused Filament Fabrication, Joshua Taylor Green Jan 2018

A New Approach To Multiplanar, Real-Time Simulation Of Physiological Knee Loads And Synthetic Knee Components Augmented By Local Composition Control In Fused Filament Fabrication, Joshua Taylor Green

Open Access Theses & Dissertations

Despite numerous advances in biomedical engineering, few developments in surgical simulation have been made outside of computational models. Cadavers remain the primary media on which surgical research and simulation is conducted. Most attempts to quantify the effects of orthopedic surgical methods fail to achieve statistical significance due to limited quantities of cadaver specimen, large variations among the cadaver population, and a lack of repeatability among measurement techniques. The general purpose of the research covered in this dissertation is to develop repeatable simulation of physiological loads and develop techniques to fabricate a synthetic-based replacement of cadaver specimens. Future work applying this …


Development Of A Desktop Material Extrusion 3d Printer With Wire Embedding Capabilities, Jose Francisco Motta Jan 2018

Development Of A Desktop Material Extrusion 3d Printer With Wire Embedding Capabilities, Jose Francisco Motta

Open Access Theses & Dissertations

Printed circuit boards (PCB) have been widely used as a permanent solution for generating complex circuitries to power electronic devices. Over the years, PCB boards have proved to be reliable when powering electronic devices. However, when fabricating a printed circuit board, one must outsource to fabricate the boards when in prototype phase. Therefore, the risk of intellectual property theft and long lead time is an issue. The objective of this Thesis is to develop a hybrid multi-tool desktop material extrusion 3D printer that allows for easy integration (modularity) of tools to generate multi-functional 3D printed components.

The addition of an …


Equibiaxial Flexural Strength Testing Of Advance Ceramics, Ryan T. Jordan Jan 2018

Equibiaxial Flexural Strength Testing Of Advance Ceramics, Ryan T. Jordan

Honors Undergraduate Theses

Ceramics are very important materials with many unique properties used in numerous industrial applications. Ceramics could be very hard and very strong in comparison to metals; however, they are very brittle, thus they are prone to instantaneous and catastrophic failure. Therefore, their reliability is compromised and it is very important to have advanced techniques that allow evaluating their mechanical behavior in many unusual stress states. One of such testing methods is biaxial strength method, that allows to measure properties not only unidirectional, but also in a biaxial way. The research work for this thesis will be built on design and …


Constitutive Model Development For Additive Manufacturing, Diana Berenice Montes Jan 2018

Constitutive Model Development For Additive Manufacturing, Diana Berenice Montes

Open Access Theses & Dissertations

Additive manufacturing (AM) is known worldwide for revolutionizing the development of three-dimensional modeling by reducing the time and increasing the precision of parts. For Powder Bed Fusion research is necessary to reduce concerns in residual stress, porosity and cracking in AM parts. A constitutive model was created in Abaqus to validate material properties of 3D printed Al 6061. Finite element analysis was performed to investigate how properties may affect in the modification of parameters to reduce printing imperfections. Research was made as well in polylactic acid properties for material extrusion to explore its behavior for creep and relaxation. Properties were …


Development And Management Of Advanced Batteries Via Additive Manufacturing And Modeling, Jie Li Jan 2018

Development And Management Of Advanced Batteries Via Additive Manufacturing And Modeling, Jie Li

Doctoral Dissertations

"The applications of Li-ion batteries require higher energy and power densities, improved safety, and sophisticated battery management systems. To satisfy these demands, as battery performances depend on the network of constituent materials, it is necessary to optimize the electrode structure. Simultaneously, the states of the battery have to be accurately estimated and controlled to maintain a durable condition of the battery system. For those purposes, this research focused on the innovation of 3D electrode via additive manufacturing, and the development of fast and accurate physical based models to predict the battery status for control purposes. Paper I proposed a novel …


Investigation Of Additively Manufactured Polymer And Transparent Polymer Composites, Gregory Taylor Jan 2018

Investigation Of Additively Manufactured Polymer And Transparent Polymer Composites, Gregory Taylor

Doctoral Dissertations

"The objective of this study is an investigation of both the characterization of fused deposition modeling (FDM) of polymer thermoplastics and the manufacture of glass-reinforced transparent composites. The flexural behavior and fracture toughness of FDM parts are critical for the evaluation and optimization of both material and process. This study focuses on the performance of FDM Ultem 1010 specimens intended to be used as composite tooling due the material's high heat resistance. A three-point bend test is performed for flexure properties while a single edge notch bend test is performed for fracture toughness. For each of the tests, the build …


Laser-Aided Additive Manufacturing Of Glass, John Michael Hostetler Jan 2018

Laser-Aided Additive Manufacturing Of Glass, John Michael Hostetler

Masters Theses

“This thesis presents various approaches for the laser-aided additive manufacturing of glass. First, a technique is investigated to create free-form, low to zero coefficient of thermal expansion structures out of silica-gel. A CO2 laser was coupled through a gantry system and focused onto a binder-free silica-gel powder bed (15-40 μm particles). Prior to writing each layer, powder is dispensed by sifting it onto the build platform as opposed to a conventional wiper system, avoiding contacting and potentially damaging sensitive parts. After deposition, the parts are annealed in a furnace to increase their strength. The influence of various process parameters …


Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen Jan 2018

Designed Extrudate For Ceramic Additive Manufacturing, Devin Mcmillen

Masters Theses

"The objective of this thesis work was to design ceramic paste systems that assist in achieving a high theoretical density ( > 95%) after deposition by a novel additive manufacturing process, i.e. Ceramic On-Demand Extrusion (CODE). The work is encompassed in five main sections: Sections 1 and 2 provide an introduction and literature review of relevant topics for the following sections of experimentation. Section 3 provides an analysis of a reaction chemistry to identify three discrete materials that could be combined via CODE and result in zirconium diboride (ZrB2) post-sintering. Section 4 describes the development of a high solids …


Additive Manufacturing Of Energy Harvesting Material System For Active Wireless Mems, Victor Fernando Elicerio Jan 2018

Additive Manufacturing Of Energy Harvesting Material System For Active Wireless Mems, Victor Fernando Elicerio

Open Access Theses & Dissertations

Additive manufacturing (AM - most commonly known as 3D printing) is a fabrication method and aims to increase production efficiency while lowering costs of constructing quality components for industry application when compared to traditional machining. In addition to this, AM possesses capabilities that far exceed machining as complex geometries are achievable through an array of technologies in a wide variety of materials. The AM process begins with a computer aided design (CAD) which creates a design path for a 3D printer to follow. By following this path, components are built from bottom to top in a layer by layer fashion. …