Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Series

Cleveland State University

Discipline
Keyword
Publication

Articles 1 - 27 of 27

Full-Text Articles in Engineering

Separation Control On High Lift Low-Pressure Turbine Airfoils Using Pulsed Vortex Generator Jets, Ralph J. Volino, Mounir B. Ibrahim Dec 2012

Separation Control On High Lift Low-Pressure Turbine Airfoils Using Pulsed Vortex Generator Jets, Ralph J. Volino, Mounir B. Ibrahim

Mechanical Engineering Faculty Publications

Boundary layer separation control has been studied using vortex generator jets (VGJs) on a very high lift, low-pressure turbine airfoil. Experiments were done under low (0.6%) freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Instantaneous velocity profile measurements were acquired in the suction surface boundary layer. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) of 25000 and 50000. Jet pulsing frequency and duty cycle were varied. In cases without …


Rotor Model Updating And Validation For An Active Magnetic Bearing Based High-Speed Machining Spindle, Adam C. Wroblewski, Jerzy T. Sawicki, Alexander H. Pesch Dec 2012

Rotor Model Updating And Validation For An Active Magnetic Bearing Based High-Speed Machining Spindle, Adam C. Wroblewski, Jerzy T. Sawicki, Alexander H. Pesch

Mechanical Engineering Faculty Publications

This paper presents an experimentally driven model updating approach to address the dynamic inaccuracy of the nominal finite element (FE) rotor model of a machining spindle supported on active magnetic bearings. Modeling error is minimized through the application of a numerical optimization algorithm to adjust appropriately selected FE model parameters. Minimizing the error of both resonance and antiresonance frequencies simultaneously accounts for rotor natural frequencies as well as for their mode shapes. Antiresonance frequencies, which are shown to heavily influence the model’s dynamic properties, are commonly disregarded in structural modeling. Evaluation of the updated rotor model is performed through comparison …


Low Latency Fault Tolerance System, Wenbing Zhao, P. M. Melliar-Smith, L. E. Moser Oct 2012

Low Latency Fault Tolerance System, Wenbing Zhao, P. M. Melliar-Smith, L. E. Moser

Electrical and Computer Engineering Faculty Publications

The Low Latency Fault Tolerance (LLFT) system provides fault tolerance for distributed applications within a local-area network, using a leader-follower replication strategy. LLFT provides application-transparent replication, with strong replica consistency, for applications that involve multiple interacting processes or threads. Its novel system model enables LLFT to maintain a single consistent infinite computation, despite faults and asynchronous communication. The LLFT Messaging Protocol provides reliable, totally-ordered message delivery by employing a group multicast, where the message ordering is determined by the primary replica in the destination group. The Leader-Determined Membership Protocol provides reconfiguration and recovery when a replica becomes faulty and when …


An Experimental Investigation Of Strain Rate, Temperature And Humidity Effects On The Mechanical Behavior Of A Perfluorosulfonic Acid Membrane, Zongwen Lu, Melissa Lugo, Michael H. Santare, Anette M. Karlsson, F. Colin Busby, Peter Walsh Sep 2012

An Experimental Investigation Of Strain Rate, Temperature And Humidity Effects On The Mechanical Behavior Of A Perfluorosulfonic Acid Membrane, Zongwen Lu, Melissa Lugo, Michael H. Santare, Anette M. Karlsson, F. Colin Busby, Peter Walsh

Mechanical Engineering Faculty Publications

The time-dependent hygro-thermal mechanical behavior of a perfluorosulfonic acid (PFSA) membrane (Nafion® 211 membrane) commonly used in Proton Exchange Membrane Fuel Cells (PEMFCs) is investigated at selected strain rates for a broad range of temperatures and humidities. Tensile tests and relaxation tests are conducted to determine Young’s modulus and proportional limit stress as functions of strain rate, temperature and humidity. The results show that Young’s modulus and proportional limit stress increase as the strain rate increases, and decrease as the temperature or humidity increases. The results also show that the mechanical response of Nafion® 211 membrane is more …


Effect Of Time-Dependent Material Properties On The Mechanical Behavior Of Pfsa Membranes Subjected To Humidity Cycling, Narinder S. Khattra, Anette M. Karlsson, Michael H. Santare, Peter Walsh, F. Colin Busby Sep 2012

Effect Of Time-Dependent Material Properties On The Mechanical Behavior Of Pfsa Membranes Subjected To Humidity Cycling, Narinder S. Khattra, Anette M. Karlsson, Michael H. Santare, Peter Walsh, F. Colin Busby

Mechanical Engineering Faculty Publications

A viscoelastic-plastic constitutive model is developed to characterize the time-dependent mechanical response of perfluorosulphonic acid (PFSA) membranes. This model is then used in finite element simulations of a representative fuel cell unit, (consisting of electrodes, gas diffusion layer and bipolar plates) subjected to standardized relative humidity (RH) cycling test conditions. The effects of hold times at constant RH, the feed rate of humidified air and sorption rate of water into the membrane on the stress response are investigated. While the longer hold times at high and low humidity lead to considerable redistribution of the stresses, the lower feed and sorption …


Controlled Deflection Approach For Rotor Crack Detection, Zbigniew Kulesza, Jerzy T. Sawicki Sep 2012

Controlled Deflection Approach For Rotor Crack Detection, Zbigniew Kulesza, Jerzy T. Sawicki

Mechanical Engineering Faculty Publications

Atransverse shaft crack is a serious malfunction that can occurdue to cyclic loading, creep, stress corrosion, and other mechanismsto which rotating machines are subjected. Though studied for manyyears, the problems of early crack detection and warning arestill in the limelight of many researchers. This is dueto the fact that the crack has subtle influence onthe dynamic response of the machine and still there areno widely accepted, reliable methods of its early detection. Thispaper presents a new approach to these problems. The methodutilizes the coupling mechanism between the bending and torsional vibrationsof the cracked, nonrotating shaft. By applying an external lateralforce …


Rigid Finite Element Model Of A Cracked Rotor, Zbigniew Kulesza, Jerzy T. Sawicki Aug 2012

Rigid Finite Element Model Of A Cracked Rotor, Zbigniew Kulesza, Jerzy T. Sawicki

Mechanical Engineering Faculty Publications

The article introduces a new mathematical model for the cracked rotating shaft. The model is based on the rigid finite element (RFE) method, which has previously been successfully applied for the dynamic analysis of many complicated, mechanical structures. In this article, the RFE method is extended and adopted for the modeling of rotating machines. An original concept of crack modeling utilizing the RFE method is developed. The crack is presented as a set of spring–damping elements of variable stiffness connecting two sections of the shaft. An alternative approach for approximating the breathing mechanism of the crack is introduced. The approach …


The Biomechanical Role Of Scaffolds In Augmented Rotator Cuff Tendon Repairs, Amit Aurora, Jesse A. Mccarron, Antonie J. Van Den Bogert, Jorge E. Gatica, Joseph P. Iannotti, Kathleen A. Derwin Aug 2012

The Biomechanical Role Of Scaffolds In Augmented Rotator Cuff Tendon Repairs, Amit Aurora, Jesse A. Mccarron, Antonie J. Van Den Bogert, Jorge E. Gatica, Joseph P. Iannotti, Kathleen A. Derwin

Mechanical Engineering Faculty Publications

Background

Scaffolds continue to be developed and used for rotator cuff repair augmentation; however, the appropriate scaffold material properties and/or surgical application techniques for achieving optimal biomechanical performance remains unknown. The objectives of the study were to simulate a previously validated spring-network model for clinically relevant scenarios to predict: (1) the manner in which changes to components of the repair influence the biomechanical performance of the repair and (2) the percent load carried by the scaffold augmentation component.

Materials and methods

The models were parametrically varied to simulate clinically relevant scenarios, namely, changes in tendon quality, altered surgical technique(s), and …


Maximizing Transmission Opportunities In Wireless Multihop Networks, Jeong-Yoon Lee, Chansu Yu, Kang G. Shin, Young-Joo Suh Jul 2012

Maximizing Transmission Opportunities In Wireless Multihop Networks, Jeong-Yoon Lee, Chansu Yu, Kang G. Shin, Young-Joo Suh

Electrical and Computer Engineering Faculty Publications

Being readily available in most of 802.11 radios, multirate capability appears to be useful as WiFi networks are getting more prevalent and crowded. More specifically, it would be helpful in high-density scenarios because internode distance is short enough to employ high data rates. However, communication at high data rates mandates a large number of hops for a given node pair in a multihop network and thus, can easily be depreciated as per-hop overhead at several layers of network protocol is aggregated over the increased number of hops. This paper presents a novel multihop, multirate adaptation mechanism, called multihop transmission opportunity …


On Establishing Elastic–Plastic Properties Of A Sphere By Indentation Testing, J. K. Phadikar, T. A. Bogetti, Anette M. Karlsson Jul 2012

On Establishing Elastic–Plastic Properties Of A Sphere By Indentation Testing, J. K. Phadikar, T. A. Bogetti, Anette M. Karlsson

Mechanical Engineering Faculty Publications

Instrumented indentation is a popular technique for determining mechanical properties of materials. Currently, the evaluation techniques of instrumented indentation are mostly limited to a flat substrate being indented by various shaped indenters (e.g., conical or spherical). This work investigates the possibility of extending instrumented indentation to non-flat surfaces. To this end, conical indentation of a sphere is investigated where two methodologies for establishing mechanical properties are explored. In the first approach, a semi-analytical approach is employed to determine the elastic modulus of the sphere utilizing the elastic unloading response (the “unloading slope”). In the second method, reverse analysis based on …


Partial-Data Interpolation Method For Arc Handling In A Computed Tomography Scanner, Jaisingh Rajwade, Lester Miller, Daniel J. Simon Jul 2012

Partial-Data Interpolation Method For Arc Handling In A Computed Tomography Scanner, Jaisingh Rajwade, Lester Miller, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

X-ray tube arcing in computed tomography scanners causes poor image quality. During the time that the X-ray tube recovers to full voltage after an arc, image data is being collected. Normally this data, acquired at less than full voltage, is discarded and interpolation is performed over the arc duration. We have developed an algorithm that corrects for improper tube voltage, allowing previously discarded data to be used for imaging. The use of voltage corrected data provides improved image quality compared to simple interpolation methods. This improvement is relevant today as the imaging field uses faster scanners with shorter sampling times.


Predictive Musculoskeletal Simulation Using Optimal Control: Effects Of Added Limb Mass On Energy Cost And Kinematics Of Walking And Running, Antonie J. Van Den Bogert, Maarten Hupperets, Heiko Schlarb, Berthold Krabbe Jun 2012

Predictive Musculoskeletal Simulation Using Optimal Control: Effects Of Added Limb Mass On Energy Cost And Kinematics Of Walking And Running, Antonie J. Van Den Bogert, Maarten Hupperets, Heiko Schlarb, Berthold Krabbe

Mechanical Engineering Faculty Publications

When designing sports equipment, it is often desirable to predict how certain design parameters will affect human performance. In many instances, this requires a consideration of human musculoskeletal mechanics and adaptive neuromuscular control. Current computational methods do not represent these mechanisms, and design optimization typically requires several iterations of prototyping and human testing. This paper introduces a computational method based on musculoskeletal modeling and optimal control, which has the capability to predict the effect of mechanical equipment properties on human performance. The underlying assumption is that users will adapt their neuromuscular control according to an optimality principle, which balances task …


Concurrent Byzantine Fault Tolerance For Software-Transactional-Memory Based Applications, Honglei Zhang, Wenbing Zhao Jun 2012

Concurrent Byzantine Fault Tolerance For Software-Transactional-Memory Based Applications, Honglei Zhang, Wenbing Zhao

Electrical and Computer Engineering Faculty Publications

Typical Byzantine fault tolerance algorithms require the application requests to be executed sequentially, which may severely limit the throughput of the system considering that modern CPUs are equipped with multiple processing cores. In this paper, we present the design and implementation of a Byzantine fault tolerance framework for software-transactional-memory based applications that aims to maximize concurrent processing while preserving strong replica consistency. The approach is based on the idea of committing concurrent transactions according to the total order of the requests that triggered the transactions. A comprehensive performance evaluation is carried out to characterize the effectiveness and limitations of this …


A Double Cantilever Beam Specimen For Foam Core Fracture Characterization, Elio E. Saenz, Adrián Hernández-Pérez, Leif A. Carlsson, Anette M. Karlsson May 2012

A Double Cantilever Beam Specimen For Foam Core Fracture Characterization, Elio E. Saenz, Adrián Hernández-Pérez, Leif A. Carlsson, Anette M. Karlsson

Mechanical Engineering Faculty Publications

This article presents the analysis and test results for a new sandwich double cantilever beam specimen for foam fracture characterization. The foam is sandwiched between two stiff and strong aluminum adherends. The specimen is analyzed using a modified version of the classical Kanninen elastic foundation model. Finite element analysis is conducted to determine the stress state near the crack tip and compliance of the double cantilever beam sandwich specimen. Model predictions are compared to experimental compliance data and crack growth paths for double cantilever beam specimens with polyvinyl chloride and polyethersulfone foams. The elastic foundation model and finite element analysis …


Simulation Of Lower Limb Axial Arterial Length Change During Locomotion, Melissa D. Young, Matthew C. Streicher, Richard J. Beck, Antonie J. Van Den Bogert, Azita Tajaddini, Brian L. Davis May 2012

Simulation Of Lower Limb Axial Arterial Length Change During Locomotion, Melissa D. Young, Matthew C. Streicher, Richard J. Beck, Antonie J. Van Den Bogert, Azita Tajaddini, Brian L. Davis

Mechanical Engineering Faculty Publications

The effect of external forces on axial arterial wall mechanics has conventionally been regarded as secondary to hemodynamic influences. However, arteries are similar to muscles in terms of the manner in which they traverse joints, and their three-dimensional geometrical requirements for joint motion. This study considers axial arterial shortening and elongation due to motion of the lower extremity during gait, ascending stairs, and sitting-to-standing motion. Arterial length change was simulated by means of a graphics based anatomic and kinematic model of the lower extremity. This model estimated the axial shortening to be as much as 23% for the femoropopliteal arterial …


A Robust Decentralized Load Frequency Controller For Interconnected Power Systems, Lili Dong, Yao Zhang, Zhiqiang Gao May 2012

A Robust Decentralized Load Frequency Controller For Interconnected Power Systems, Lili Dong, Yao Zhang, Zhiqiang Gao

Electrical and Computer Engineering Faculty Publications

A novel design of a robust decentralized load frequency control (LFC) algorithm is proposed for an inter-connected three-area power system, for the purpose of regulating area control error (ACE) in the presence of system uncertainties and external disturbances. The design is based on the concept of active disturbance rejection control (ADRC). Estimating and mitigating the total effect of various uncertainties in real time, ADRC is particularly effective against a wide range of parameter variations, model uncertainties, and large disturbances. Furthermore, with only two tuning parameters, the controller provides a simple and easy-to-use solution to complex engineering problems in practice. Here, …


Predictive Simulation Of Gait At Low Gravity Reveals Skipping As The Preferred Locomotion Strategy, Marko Ackermann, Antonie J. Van Den Bogert Apr 2012

Predictive Simulation Of Gait At Low Gravity Reveals Skipping As The Preferred Locomotion Strategy, Marko Ackermann, Antonie J. Van Den Bogert

Mechanical Engineering Faculty Publications

The investigation of gait strategies at low gravity environments gained momentum recently as manned missions to the Moon and to Mars are reconsidered. Although reports by astronauts of the Apollo missions indicate alternative gait strategies might be favored on the Moon, computational simulations and experimental investigations have been almost exclusively limited to the study of either walking or running, the locomotion modes preferred under Earth's gravity. In order to investigate the gait strategies likely to be favored at low gravity a series of predictive, computational simulations of gait are performed using a physiological model of the musculoskeletal system, without assuming …


A Three-Dimensional Inverse Finite Element Analysis Of The Heel Pad, Snehal Chokhandre, Jason P. Halloran, Antonie J. Van Den Bogert, Ahmet Erdemir Mar 2012

A Three-Dimensional Inverse Finite Element Analysis Of The Heel Pad, Snehal Chokhandre, Jason P. Halloran, Antonie J. Van Den Bogert, Ahmet Erdemir

Mechanical Engineering Faculty Publications

Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific …


Practical Active Disturbance Rejection Solution For Monitoring Automatic Gauge Control System With Large Time-Delay, Li-Jun Wang, Chao-Nan Tong, Qing Li, Yi-Xin Yin, Zhi-Qiang Gao, Qin-Ling Zheng Mar 2012

Practical Active Disturbance Rejection Solution For Monitoring Automatic Gauge Control System With Large Time-Delay, Li-Jun Wang, Chao-Nan Tong, Qing Li, Yi-Xin Yin, Zhi-Qiang Gao, Qin-Ling Zheng

Electrical and Computer Engineering Faculty Publications

A practical active disturbance rejection control (ADRC) solution is proposed for the furnace temperature system. Employing a linear reduced-order model with optimized parameters, the practical ADRC is simple to use, easy to tune and energy-efficient in dealing with the uncertainties and disturbances in plant dynamics. Through the order reduction in both the plant model and the state observer, we develop a first order extended state observer for estimating in real-time the total value of the external and internal disturbances. The practical and standard ADRCs outperform the Smith Predictor and the PID controller in disturbance-rejection and robustness; however, the practical ADRC …


Papaya (Carica Papaya) Seed As A Low-Cost Sorbent For Zinc Removal, Siew-Teng Ong, Shiau-Ping Yip, Pei-Sin Keng, Siew-Ling Lee, Yung-Tse Hung Feb 2012

Papaya (Carica Papaya) Seed As A Low-Cost Sorbent For Zinc Removal, Siew-Teng Ong, Shiau-Ping Yip, Pei-Sin Keng, Siew-Ling Lee, Yung-Tse Hung

Civil and Environmental Engineering Faculty Publications

The potential of using papaya seed as a sorbent for the removal of Zn from aqueous solution was investigated. The sorption characteristics of the sorbent was studied under various experimental conditions, such as pH, contact time, concentration of Zn(II), agitation rate and sorbent’s particle size. The equilibrium data have been studied using Langmuir, Freundlich and Brunauer-Emmett-Teller equations. The best correlation was obtained using Langmuir isotherm with the regression coefficient value of 0.9799 and maximum sorption capacity of 19.88 mg/g. The effective pH for the maximum uptake of Zn(II) was at pH 5.0. An increase in percentage uptake of Zn(II) can …


Cardiomyopathy Detection From Electrocardiogram Features, Mirela Ovreiu, Daniel J. Simon Feb 2012

Cardiomyopathy Detection From Electrocardiogram Features, Mirela Ovreiu, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Cardiomyopathy means "heart (cardio) muscle (myo) disease (pathy)". Currently, cardiomyopathies are defined as myocardial disorders in which the heart muscle is structurally and/or functionally abnormal in the absence of a coronary artery disease, hypertension, valvular heart disease or congenital heart disease sufficient to cause the observed myocardial abnormalities. This book provides a comprehensive, state-of-the-art review of the current knowledge of cardiomyopathies. Instead of following the classic interdisciplinary division, the entire cardiovascular system is presented as a functional unity, and the contributors explore pathophysiological mechanisms from different perspectives, including genetics, molecular biology, electrophysiology, invasive and non-invasive cardiology, imaging methods and surgery. …


Cache Invalidation Strategies For Internet-Based Vehicular Ad Hoc Networks, Sunho Lim, Chansu Yu, Chita R. Das Feb 2012

Cache Invalidation Strategies For Internet-Based Vehicular Ad Hoc Networks, Sunho Lim, Chansu Yu, Chita R. Das

Electrical and Computer Engineering Faculty Publications

Internet-based vehicular ad hoc network (Ivanet) is an emerging technique that combines a wired Internet and a vehicular ad hoc network (Vanet) for developing an ubiquitous communication infrastructure and improving universal information and service accessibility. A key design optimization technique in Ivanets is to cache the frequently accessed data items in a local storage of vehicles. Since vehicles are not critically limited by the storage/memory space and power consumption, selecting proper data items for caching is not very critical. Rather, an important design issue is how to keep the cached copies valid when the original data items are updated. This …


A Novel Practical Control Approach For Rate Independent Hysteretic Systems, Frank J. Goforth, Qing Zhengb, Zhiqiang Gao Feb 2012

A Novel Practical Control Approach For Rate Independent Hysteretic Systems, Frank J. Goforth, Qing Zhengb, Zhiqiang Gao

Electrical and Computer Engineering Faculty Publications

A disturbance rejection based control approach, active disturbance rejection control (ADRC), is proposed for hysteretic systems with unknown characteristics. It is an appealing alternative to hysteresis compensation because it does not require a detailed model of hysteresis, by treating the nonlinear hysteresis as a common disturbance and actively rejecting it. The stability characteristic of the ADRC is analyzed. It is shown that, in the face of the inherent dynamic uncertainties, the estimation and closed-loop tracking errors of ADRC are bounded, with their bounds monotonously decreasing with the observer and controller bandwidths, respectively. Simulation results on a typical hysteretic system further …


Interfacing Building Response With Human Behavior Under Seismic Events, Z. Liu, Mehdi Jalalpour, C. Jacques, S. Szyniszewski, J. Mitrani-Reiser, James K. Guest, T. Igusa, B. W. Schafer Jan 2012

Interfacing Building Response With Human Behavior Under Seismic Events, Z. Liu, Mehdi Jalalpour, C. Jacques, S. Szyniszewski, J. Mitrani-Reiser, James K. Guest, T. Igusa, B. W. Schafer

Civil and Environmental Engineering Faculty Publications

The goal of this paper is to model the interaction of humans with their built environment during and immediately following a natural disaster. The study uses finite element simulations to evaluate the response of buildings under input ground motions and agent-based dynamic modeling to model the subsequent evacuation of building occupants in the study area immediately following the seismic event. The structural model directly captures building damage and collapse, as well as floor accelerations and displacements to determine nonstructural damage, injuries and fatalities. The goal of this research is to make connections between building damage and occupant injuries, with geographic …


Structural Topology Optimization: Moving Beyond Linear Elastic Design Objectives, James K. Guest, Reza Lotfi, Andrew T. Gaynor, Mehdi Jalalpour Jan 2012

Structural Topology Optimization: Moving Beyond Linear Elastic Design Objectives, James K. Guest, Reza Lotfi, Andrew T. Gaynor, Mehdi Jalalpour

Civil and Environmental Engineering Faculty Publications

Topology optimization is a systematic, free-form approach to the design of structures. It simultaneously optimizes material quantities and system connectivity, enabling the discovery of new, high-performance structural concepts. While powerful, this design freedom has a tendency to produce solutions that are unrealizable or impractical from a structural engineering perspective. Examples include overly complex topologies that are expensive to construct and ultra-slender subsystems that may be overly susceptible to imperfections. This paper summarizes recent tools developed by the authors capable of mitigating these shortcomings through consideration of (1) constructability, (2) nonlinear mechanics, and (3) uncertainties.


Many-To-One Communication Protocol For Wireless Sensor Networks, Chansu Yu, Robert Fiske, Seungmin Park, Won-Tae Kim Jan 2012

Many-To-One Communication Protocol For Wireless Sensor Networks, Chansu Yu, Robert Fiske, Seungmin Park, Won-Tae Kim

Electrical and Computer Engineering Faculty Publications

This paper proposes a novel communication protocol, called Many-to-One Sensors-to-Sink (MOSS), tailored to wireless sensor networks (WSNs). It exploits the unique sensors-to-sink traffic pattern to realize low-overhead medium access and low- latency sensors-to-sink routing paths. In conventional schedule-based MAC protocols such as S-MAC, sensor nodes in the proximity of the event generate reports simultaneously, causing unreliable and unpredictable performance during a brief but critical period of time when an event of interest occurs. MOSS is based on time division multiple access (TDMA) that avoids energy waste due to collisions, idle listening and overhearing and avoids unreliable behavior mentioned above. A …


A Novel Control Design Approach For Sever Subsystems: The Concept Of Active Disturbance Rejection And A Case Study, John Ping, Zhiqiang Gao, Rahul Khanna Jan 2012

A Novel Control Design Approach For Sever Subsystems: The Concept Of Active Disturbance Rejection And A Case Study, John Ping, Zhiqiang Gao, Rahul Khanna

Electrical and Computer Engineering Faculty Publications

No abstract provided.