Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2007

Physics

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 89

Full-Text Articles in Engineering

Metal Modulation Epitaxy Growth For Extremely High Hole Concentrations Above 10(19) Cm(-3) In Gan, Gon Namkoong, Elaissa Trybus, Kyung Keun Lee, Michael Moseley, W. Alan Doolittle, David C. Look Dec 2007

Metal Modulation Epitaxy Growth For Extremely High Hole Concentrations Above 10(19) Cm(-3) In Gan, Gon Namkoong, Elaissa Trybus, Kyung Keun Lee, Michael Moseley, W. Alan Doolittle, David C. Look

Applied Research Center Publications

The free hole carriers in GaN have been limited to concentrations in the low 1018 cm−3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ~10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ~1.5 x 1019 cm−3.

© 2008 American Institute of Physics.


). Size Dependency Of The Elastic Modulus Of Zno Nanowires: Surface Stress Effect, Guofeng Wang, Xiaodong Li Dec 2007

). Size Dependency Of The Elastic Modulus Of Zno Nanowires: Surface Stress Effect, Guofeng Wang, Xiaodong Li

Faculty Publications

Relation between the elastic modulus and the diameter (D) of ZnOnanowires was elucidated using a model with the calculated ZnOsurface stresses as input. We predict for ZnOnanowires due to surface stress effect: (1) when D>20nm, the elastic modulus would be lower than the bulk modulus and decrease with the decreasing diameter, (2) when 20nm>D>2nm, the nanowires with a longer length and a wurtzite crystal structure could be mechanically unstable, and (3) when D<2nm, the elastic modulus would be higher than that of the bulk value and increase with a decrease in nanowire diameter.


Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson Dec 2007

Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson

Physics Faculty Research

We provide a convenient recipe for fabricating reliable superconducting microbolometers as acoustic phonon detectors with sub-nanosecond response, using imagereversal optical lithography and dc-magnetron sputtering, and our recipe requires no chemical or plasma etching. Our approach solves the traditional problem for granular aluminium bolometers of unreliable (i.e., non-Ohmic) electrical contacts by sequentially sputtering the granular aluminium film and then a palladium capping layer. We use dc calibration data, the method of Danilchenko et al. [1], and direct nanosecond-pulsed photoexcitation to obtain the microbolometer’s characteristic current, thermal conductance, characteristic relaxation time, and heat capacity. We also demonstrate the use of the deconvolution …


A Fast Image Super-Resolution Algorithm Using An Adaptive Wiener Filter, Russell C. Hardie Dec 2007

A Fast Image Super-Resolution Algorithm Using An Adaptive Wiener Filter, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

A computationally simple super-resolution algorithm using a type of adaptive Wiener filter is proposed. The algorithm produces an improved resolution image from a sequence of low-resolution (LR) video frames with overlapping field of view. The algorithm uses subpixel registration to position each LR pixel value on a common spatial grid that is referenced to the average position of the input frames. The positions of the LR pixels are not quantized to a finite grid as with some previous techniques. The output high-resolution (HR) pixels are obtained using a weighted sum of LR pixels in a local moving window. Using a …


Practical Sensor For Measurement Of Nitrogen, Dusan Popovic, Vladimir Milosavljevic, Steven Daniels Nov 2007

Practical Sensor For Measurement Of Nitrogen, Dusan Popovic, Vladimir Milosavljevic, Steven Daniels

Articles

This paper presents a method for precise measurement of atomic and molecular nitrogen in an oxygen-nitrogen dc plasma. This is achieved by monitoring the intensities of the atomic nitrogen spectral line at 821.6 nm and the molecular nitrogen bandhead at 337.1 nm, relative to the atomic oxygen spectral line at 844.7 nm. Oxygen is one of the most frequently used gases for surface chemical treatment, including deposition and etching, therefore the ability to measure and control the process and chemical composition of the process is essential. To validate this oxygen actimometry method for N2-xO2 (where x varies from 0 to …


Posterminaries: More Or Less Modern, Alexander H. King Nov 2007

Posterminaries: More Or Less Modern, Alexander H. King

Alexander H. King

It is yet another sign that I am aging. More and more often when young researchers hand me a written report of their research, I find myself criticizing their introductory section: “You need to start your literature survey with the original papers on this topic. Go and read…” followed by a citation to some classic of the learned literature.


Effect Of Tip Resonances On Tunnelling Anisotropic Magnetoresistance In Ferromagnetic Break Junctions: A First-Principles Study, John D. Burton, Renat F. Sabirianov, Julian P. Velev, O. N. Mryasov, Evgeny Y. Tsymbal Oct 2007

Effect Of Tip Resonances On Tunnelling Anisotropic Magnetoresistance In Ferromagnetic Break Junctions: A First-Principles Study, John D. Burton, Renat F. Sabirianov, Julian P. Velev, O. N. Mryasov, Evgeny Y. Tsymbal

Materials Research Science and Engineering Center: Faculty Publications

First-principles calculations of electron tunneling transport in nanoscale Ni and Co break-junctions reveal strong dependence of the conductance on the magnetization direction, an effect known as tunneling anisotropic magnetoresistance TAMR. An important aspect of this phenomenon stems from resonant states localized in the electrodes near the junction break. The energy and broadening of these states is strongly affected by the magnetization orientation due to spin-orbit coupling, causing TAMR to be sensitive to bias voltage on a scale of a few millivolts. Our results bear a resemblance to recent experimental data and suggest that TAMR driven by resonant states is a …


Growth-Temperature Optimization For Low Carrier-Density In0.75Ga0.25As-Based High Electron Mobility Transistors On Inp, Paul J. Simmonds, H. E. Beere, D. A. Ritchie, S. N. Holmes Oct 2007

Growth-Temperature Optimization For Low Carrier-Density In0.75Ga0.25As-Based High Electron Mobility Transistors On Inp, Paul J. Simmonds, H. E. Beere, D. A. Ritchie, S. N. Holmes

Paul J. Simmonds

Two-dimensional electron gases (2DEGs) were formed in undoped In0.75Al0.25As / In0.75Ga0.25As / In0.75Al0.25As quantum wells. The optimal growth temperature for this structure is 410°C, with peak 2DEG electron mobility and density values of μ = 221000 cm2/V s and n = 1.36 × 1011 cm−2 at 1.5 K. This electron mobility is equal to the highest previously published for these undoped structures but with a factor of 2 reduction in n. This has been achieved through the use of a significantly thinner InAlAs …


Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li Oct 2007

Nanoindentation Of The A And C Domains In A Tetragonal Batio3 Single Crystal, Young-Bae Park, Matthew J. Dicken, Zhi-Hui Xu, Xiaodong Li

Faculty Publications

Nanoindentation in conjunction with piezoresponse force microscopy was used to study domain switching and to measure the mechanical properties of individual ferroelectric domains in a tetragonal BaTiO3 single crystal. It was found that nanoindentation has induced local domain switching; the a and c domains of BaTiO3 have different elastic moduli but similar hardness.Nanoindentationmodulus mapping on the a and c domains further confirmed such difference in elasticity. Finite element modeling was used to simulate the von Mises stress and plastic strain profiles of the indentations on both a and c domains, which introduces a much higher stress level than …


Implementation Of Uncertainty Propagation In Triton/Keno: To Support The Global Nuclear Energy Partnership, Charlotta Sanders, Denis Beller Oct 2007

Implementation Of Uncertainty Propagation In Triton/Keno: To Support The Global Nuclear Energy Partnership, Charlotta Sanders, Denis Beller

Reactor Campaign (TRP)

Monte Carlo methods are beginning to be used for three-dimensional fuel depletion analyses to compute various quantities of interest, including isotopic compositions of used fuel.1 The TRITON control module, available in the SCALE 5.1 code system, can perform three dimensional (3-D) depletion calculations using either the KENO V.a or KENO-VI Monte Carlo transport codes, as well as the two-dimensional (2- D) NEWT discrete ordinates code. For typical reactor systems, the neutron flux is not spatially uniform. For Monte Carlo simulations, this results in non-uniform statistical uncertainties in the computed reaction rates. For spatial regions where the flux is low, e.g., …


Monaco/Mavric Evaluation For Facility Shielding And Dose Rate Analysis: To Support The Global Nuclear Energy Partnership, Charlotta Sanders, Denis Beller Oct 2007

Monaco/Mavric Evaluation For Facility Shielding And Dose Rate Analysis: To Support The Global Nuclear Energy Partnership, Charlotta Sanders, Denis Beller

Reactor Campaign (TRP)

Monte Carlo methods are used to compute fluxes or dose rates over large areas using mesh tallies. For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas.

In this project the MAVRIC sequence will be evaluated along with the Monte Carlo engine Monaco to investigate its effectiveness and usefulness in facility shielding and dose rate analyses. A previously MCNP-evaluated cask …


Self-Organization In Cathode Boundary Layer Discharges, Nobuhiko Takano Oct 2007

Self-Organization In Cathode Boundary Layer Discharges, Nobuhiko Takano

Electrical & Computer Engineering Theses & Dissertations

Cathode boundary layer (CBL) discharge, which has been developed as a UV light source, operates in a direct current between a planar cathode and a ring-shape anode that are separated by a dielectric with an opening of the same diameter as the anode. The nonthermal CBL discharges operate in a medium pressure range down to 30 Torr, emitting excimer radiation when operated with noble gases. The radiant excimer emittance at 172 nm in xenon reaches 1.7 W/cm2, and a maximum excimer efficiency of 6 % has been obtained. The high excimer radiant emittance, in addition to low cost …


Bactericidal Effects Of Cold Plasma Technology On Geobacillus Stearothermophilus And Bacillus Cereus Microorganisms, Angela D. Morris, Gayle B. Mccombs, Susan L. Tolle, Mounir Laroussi, Wayne L. Hynes Oct 2007

Bactericidal Effects Of Cold Plasma Technology On Geobacillus Stearothermophilus And Bacillus Cereus Microorganisms, Angela D. Morris, Gayle B. Mccombs, Susan L. Tolle, Mounir Laroussi, Wayne L. Hynes

Dental Hygiene Faculty Publications

Cold plasma is a state of matter that contains a large number of particles that are electrically charged. Plasmas generate chemically reactive species and ultraviolet radiation making them useful in decontamination applications (Kong & Laroussi, 2003). Research regarding the inactivation of gram-positive bacteria by cold plasma has been studied by Laroussi et al (2003); however, there is limited research regarding the germicidal effectiveness of cold plasma on Geobacillus stearothermophilus and Bacillus cereus microorganisms. The purpose of this study was to determine if cold plasma technology inactivates Geobacillus stearothermophilus and Bacillus cereus vegetative cells and spores. This study consisted of 981 …


Gnep Quarterly Input – Unlv July 1 Through September 30, 2007, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Sep 2007

Gnep Quarterly Input – Unlv July 1 Through September 30, 2007, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the Global Nuclear Energy Partnership (GNEP) through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Quantum Dot Resonant Tunneling Diodes For Telecom Wavelength Single Photon Detection, H. W. Li, Paul J. Simmonds, H. E. Beere, B. E. Kardynał, D. A. Ritchie, A. J. Shields Sep 2007

Quantum Dot Resonant Tunneling Diodes For Telecom Wavelength Single Photon Detection, H. W. Li, Paul J. Simmonds, H. E. Beere, B. E. Kardynał, D. A. Ritchie, A. J. Shields

Paul J. Simmonds

Single photon detection was realized at a telecom wavelength with quantum dot resonant tunneling diodes grown on an InP substrate. The structure contains a AlAs/In0.53Ga0.47As/AlAs quantum well with InAs quantum dots grown on the top AlAs barrier. The single photon detection efficiency of the device under 1310 nm illumination was measured to be about 0.35% ± 0.07% with a dark count rate of 1.58×10-6 ns-1. This corresponds to an internal efficiency of 6.3%.


Examination Of Energy And Group Velocities In Positive And Negative Index Chiral Materials With And Without Dispersion, Monish Ranjan Chatterjee, Partha P. Banerjee Sep 2007

Examination Of Energy And Group Velocities In Positive And Negative Index Chiral Materials With And Without Dispersion, Monish Ranjan Chatterjee, Partha P. Banerjee

Electrical and Computer Engineering Faculty Publications

Concepts of energy and group velocities, Poynting and propagation vectors are examined for both positive and negative index materials. Known definitions for these entities are explored in terms of the interplay of chirality and dispersion.


Quantum Dot Resonant Tunneling Diode For Telecommunication Wavelength Single Photon Detection, H. W. Li, B. E. Kardynał, P. See, A. J. Shields, P. Simmonds, H. E. Beere, D. A. Ritchie Aug 2007

Quantum Dot Resonant Tunneling Diode For Telecommunication Wavelength Single Photon Detection, H. W. Li, B. E. Kardynał, P. See, A. J. Shields, P. Simmonds, H. E. Beere, D. A. Ritchie

Paul J. Simmonds

The authors present a quantum dot (QD) based single photon detector operating at a fiber optic telecommunication wavelength. The detector is based on an AlAs/In0.53Ga0.47As/AlAs double-barrier resonant tunneling diode containing a layer of self-assembled InAs QDs grown on an InP substrate. The device shows an internal efficiency of about 6.3% with a dark count rate of 1.58 × 10−6 ns−1 for 1310 nm photons.


49th Rocky Mountain Conference On Analytical Chemistry Jul 2007

49th Rocky Mountain Conference On Analytical Chemistry

Rocky Mountain Conference on Magnetic Resonance

Final program, abstracts, and information about the 49th annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-endorsed by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Breckenridge, Colorado, July 22-26, 2007.


Control Of Porosity In Fluoride Thin Films Prepared By Vapor Deposition, Alexander H. King Jul 2007

Control Of Porosity In Fluoride Thin Films Prepared By Vapor Deposition, Alexander H. King

Alexander H. King

We have measured the porosity in thin films of lithium fluoride (LiF), magnesium fluoride (MgF2), barium fluoride (BaF2), and calcium fluoride (CaF2) as a function of the substrate temperature for films deposited by thermal evaporation onto glass substrates. The amount of porosity in the thin films was measured using an atomic force microscope and a quartz crystal thickness monitor. The porosity was very sensitive to the substrate temperature and decreased as the substrate temperature increased. Consistent behavior was observed among all of the materials in this study.


Posterminaries: Full Circle, Alexander H. King Jul 2007

Posterminaries: Full Circle, Alexander H. King

Alexander H. King

A few years ago, I was walking near the old Union Station in Pittsburgh with a colleague only slightly younger than myself, when we happened upon some large-scale relics of the steel industry displayed for public viewing. “You don’t see too many of those in public parking lots,” I offered. “Um… what is it?” was the response. I suppose I was just a little surprised that a prominent materials scientist did not recognize a Bessemer converter—arguably the principal source of wealth during the U.S. industrial revolution—but this conversation took place back when steel was in decline, and many university Materials …


Afci Quarterly Input – Unlv April 1 Through June 30, 2007, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Jun 2007

Afci Quarterly Input – Unlv April 1 Through June 30, 2007, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.


Density Functional Study Of Structural Trends For Late-Transition-Metal 13-Atom Clusters, Lin-Lin Wang, Duane D. Johnson Jun 2007

Density Functional Study Of Structural Trends For Late-Transition-Metal 13-Atom Clusters, Lin-Lin Wang, Duane D. Johnson

Duane D. Johnson

Because reactivity increases as particle size decreases and competition between numerous structures are possible, which affects catalytic and magnetic properties, we study the structural trends of late-transition-metal 13-atom clusters using density functional theory within the generalized gradient approximation to exchange-correlation functional. We consider open structural motifs, such as bilayer and cubic (recently found to have lower energy), and find new bilayer candidates that are even lower in energy. To study the influence of d-orbital filling on structural trends, we focus on Pt, Pd, and Rh clusters and find several new, low-energy structures for Pt13 and Pd13 from searches using a …


Numerical Simulation Of The Filling And Curing Stages In Reaction Injection Moulding, Using Ansys Cfx, Rui Igreja Jun 2007

Numerical Simulation Of The Filling And Curing Stages In Reaction Injection Moulding, Using Ansys Cfx, Rui Igreja

Rui Igreja

Commonly used methods for injection moulding simulation involve a considerable number of simplifications, leading to a significant reduction of the computational effort but, in some cases also to limitations. In this work, Reaction Injection Moulding (RIM) simulations are performed with a minimum of simplifications, by using the general purpose CFD software package Ansys CFX, designed for numerical simulation of fluid flow and heat and mass transfer. The Ansys CFX’s homogeneous multiphase flow model, which is generally considered to be the appropriate choice for modelling free surface flows where the phases are completely stratified and the interface is well defined, is …


Analysis Of Beam Propagation In 90-Degree Holographic Recording And Readout Using Transfer Functions And Numerical 2-D-Laplace Inversion, Monish Ranjan Chatterjee, Partha P. Banerjee, George Nehmetallah Jun 2007

Analysis Of Beam Propagation In 90-Degree Holographic Recording And Readout Using Transfer Functions And Numerical 2-D-Laplace Inversion, Monish Ranjan Chatterjee, Partha P. Banerjee, George Nehmetallah

Electrical and Computer Engineering Faculty Publications

Recently, 2-D-Laplace analysis of recording and readout of edge-holograms was reported. Numerical Laplace inversion was examined for simple test cases. Inversion algorithms are applied to examine beam shaping and distortion in photovoltaic and photorefractive materials.


Parallel Fast Multipole Method For Molecular Dynamics, Reid G. Ormseth Jun 2007

Parallel Fast Multipole Method For Molecular Dynamics, Reid G. Ormseth

Theses and Dissertations

We report on a parallel version of the Fast Multipole Method (FMM) implemented in the classical molecular dynamics code, NAMD (Not Another Molecular Dynamics program). This novel implementation of FMM aims to minimize interprocessor communication through the modification of the FMM grid to match the hybrid force and spatial decomposition scheme already present in NAMD. This new implementation has the benefit of replacing all-to-all communications broadcasts with direct communications between nearest neighbors. This results in a significant reduction in the amount of communication compared to earlier attempts to integrate FMM into common molecular dynamics programs. The early performance of FMM …


Growth By Molecular Beam Epitaxy Of Self-Assembled Inas Quantum Dots On Inalas And Ingaas Lattice-Matched To Inp, Paul J. Simmonds, H W. Li, H E. Beere, P See, A J. Shields, D A. Ritchie May 2007

Growth By Molecular Beam Epitaxy Of Self-Assembled Inas Quantum Dots On Inalas And Ingaas Lattice-Matched To Inp, Paul J. Simmonds, H W. Li, H E. Beere, P See, A J. Shields, D A. Ritchie

Paul J. Simmonds

The authors report the results of a detailed study of the effect of growth conditions, for molecular beam epitaxy, on the structural and optical properties of self-assembled InAs quantum dots (QDs) on In0.524Al0.476As. InAs QDs both buried in, and on top of, In0.524Al0.476As were analyzed using photoluminescence (PL) and atomic force microscopy. InAs QD morphology and peak PL emission wavelength both scale linearly with deposition thickness in monolayers (MLs). InAs deposition thickness can be used to tune QD PL wavelength by 170 nm/ML, over a range of almost 700 nm. Increasing growth …


Ua66 2007 Student Awards Ceremony, Wku Ogden College Of Science & Engineering Apr 2007

Ua66 2007 Student Awards Ceremony, Wku Ogden College Of Science & Engineering

WKU Archives Records

Program recognizing Ogden College students with brief list of activities for each student.


Investigation Of Magnetic Field Profile Effects In Hall Thrusters, Oren Kornberg Apr 2007

Investigation Of Magnetic Field Profile Effects In Hall Thrusters, Oren Kornberg

Master's Theses - Daytona Beach

The purpose of this study was to show the relationship of different magnetic field profiles to the acceleration region length of a Hall thruster. The general transport equations were simplified and solved using a one-dimensional analysis. Some of the model assumptions include quasineutrality, Maxwellian electrons, and negligible thruster wall effects. The solved equation kept magnetic field as an input to the model for the analysis. The magnetic field was altered by changing the shape through the thruster, while keeping the maximum point fixed, and by shifting the profile, while keeping the shape fixed. Results indicate a strong correlation between the …


Interface Reorientation During Coherent Phase Transformations, Valery I. Levitas, I. B. Ozsoy, D. L. Preston Apr 2007

Interface Reorientation During Coherent Phase Transformations, Valery I. Levitas, I. B. Ozsoy, D. L. Preston

Valery I. Levitas

The universal thermodynamic driving force for coherent plane interface reorientation (IR) during first-order phase transformations (PT) in solids is derived. The relation between the rates of IR and interface propagation (IP) and the corresponding driving forces are derived for combined athermal and drag interface friction. The coupled evolution of IR and IP during cubic-tetragonal and tetragonal-orthorhombic PTs under three-dimensional loading is studied. An instability in the interface orientation is shown to have the features of a first-order PT.


Afci Quarterly Input – Unlv January 1 Through March 31, 2007, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division Mar 2007

Afci Quarterly Input – Unlv January 1 Through March 31, 2007, Harry Reid Center For Environmental Studies. Nuclear Science And Technology Division

Transmutation Research Program Reports (TRP)

Quarterly report highlighting research projects, activities and objectives of the Transmutation Research Program at the Nuclear Science & Technology Division, Harry Reid Research Center.

The University of Nevada, Las Vegas supports the AFCI through research and development of technologies for economic and environmentally sound refinement of spent nuclear fuel. The UNLV program has four components: infrastructure, international collaboration, student-based research, and management and program support.