Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Applications Of The Homotopy Analysis Method To Optimal Control Problems, Shubham Singh Aug 2016

Applications Of The Homotopy Analysis Method To Optimal Control Problems, Shubham Singh

Open Access Theses

Traditionally, trajectory optimization for aerospace applications has been performed using either direct or indirect methods. Indirect methods produce highly accurate solutions but suer from a small convergence region, requiring initial guesses close to the optimal solution. In past two decades, a new series of analytical approximation methods have been used for solving systems of dierential equations and boundary value problems.

The Homotopy Analysis Method (HAM) is one such method which has been used to solve typical boundary value problems in nance, science, and engineering. In this investigation, a methodology is created to solve indirect trajectory optimization problems using the Homotopy …


Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey Oct 2013

Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey

Doctoral Dissertations

Currently, the most commonly used treatments for cancerous tumors (chemotherapy, radiation, etc.) have almost no method of monitoring the administration of the treatment for adverse effects in real time. Without any real time feedback or control, treatment becomes a "guess and check" method with no way of predicting the effects of the drugs based on the actual bioavailability to the patient's body. One particular drug may be effective for one patient, yet provide no benefit to another. Doctors and scientists do not routinely attempt to quantifiably explain this discrepancy. In this work, mathematical modeling and analysis techniques are joined together …


Numerical Simulation Of Nanopulse Penetration Of Biological Matter Using The Adi-Fdtd Method, Fei Zhu Apr 2012

Numerical Simulation Of Nanopulse Penetration Of Biological Matter Using The Adi-Fdtd Method, Fei Zhu

Doctoral Dissertations

Nanopulses are ultra-wide-band (UWB) electromagnetic pulses with pulse duration of only a few nanoseconds and electric field amplitudes greater than 105 V/m. They have been widely used in the development of new technologies in the field of medicine. Therefore, the study of the nanopulse bioeffects is important to ensure the appropriate application with nanopulses in biomedical and biotechnological settings. The conventional finite-difference time-domain (FDTD) method for solving Maxwell's equations has been proven to be an effective method to solve the problems related to electromagnetism. However, its application is restricted by the Courant, Friedrichs, and Lewy (CFL) stability condition that confines …


A Numerical Method For Obtaining An Optimal Temperature Distribution In A 3d Triple-Layered Cylindrical Skin Structure, Le Zhang Apr 2005

A Numerical Method For Obtaining An Optimal Temperature Distribution In A 3d Triple-Layered Cylindrical Skin Structure, Le Zhang

Doctoral Dissertations

In recent years, it has been interesting to research hyperthermia combined with radiation and cytotoxic drugs to enhance the killing of tumors. The crucial problem is that when heating the tumor tissues, one needs to keep the surrounding normal tissue below a temperature that will produce harm. Thus, it is important to obtain the temperature field of the entire treatment region. The objective of this dissertation is to develop a numerical model for obtaining an optimal temperature distribution in a 3D triple-layered cylindrical skin structure. To this end, we pre-specify the temperatures to be obtained at the center and perimeter …


Computational Approaches To The Design And Analysis Of Stability Of Polypeptide Multilayer Thin Films, Bin Zheng Oct 2004

Computational Approaches To The Design And Analysis Of Stability Of Polypeptide Multilayer Thin Films, Bin Zheng

Doctoral Dissertations

The focus of this research is the development of computational approaches to understanding the physical basis of layer-by-layer assembly (LBL), a key methodology of nanomanufacturing. The results provided detailed information on structure which cannot be obtained directly by experiments.

The model systems chosen for study are polypeptide chains. Reasons for this are that polypeptides are no less polyelectrolytes than the more usual polyions, and one can control the primary structure of a polypeptide on a residue-by-residue basis using modern synthetic methods. Moreover, as peptides constitute one of the four major classes of biological macromolecules, research in this direction is expected …


A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu Jul 2004

A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu

Doctoral Dissertations

Investigations on instantaneous skin burns are useful for an accurate assessment of burn-evaluation and for establishing thermal protections for various purposes. Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it is essential for developers and users of hyperthermia systems to predict, and interpret correctly the biomass thermal and vascular response to heating. In this dissertation, we employ the well-known Pennes' bioheat transfer equation to predict the degree of skin burn and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes' bioheat transfer equation in a three-dimensional single …


Pattern Recognition For Electric Power System Protection, Yong Sheng Oct 2002

Pattern Recognition For Electric Power System Protection, Yong Sheng

Doctoral Dissertations

The objective of this research is to demonstrate pattern recognition tools such as decision trees (DTs) and neural networks that will improve and automate the design of relay protection functions in electric power systems. Protection functions that will benefit from the research include relay algorithms for high voltage transformer protection (TP) and for high impedance fault (HIF) detection. A methodology, which uses DTs and wavelet analysis to distinguish transformer internal faults from other conditions that are easily mistaken for internal faults, has been developed. Also, a DT based solution is proposed to discriminate HIFs from normal operations that may confuse …


Modeling And Experimental Verification Of Growth Of An Axisymmetric Cylindrical Rod By Three-Dimensional Laser-Induced Chemical Vapor Deposition, Qing Chen Apr 2002

Modeling And Experimental Verification Of Growth Of An Axisymmetric Cylindrical Rod By Three-Dimensional Laser-Induced Chemical Vapor Deposition, Qing Chen

Doctoral Dissertations

Three-dimensional laser-induced chemical vapor deposition (3D-LCVD) is a recently developed micro-manufacturing process that holds great potential for the production of complex microstructures with high aspect ratio. A laser beam is focused through a vacuum chamber window onto a movable substrate. The heat from the laser at or near the focal spot on the substrate induces the decomposition reaction of precursor gas in the chamber. As a result, solid-phase reaction products are deposited on the substrate to form the microstructure. In this dissertation, a numerical model is developed for simulating kinetically-limited growth of an axisymmetric cylindrical rod by pre-specifying the surface …