Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Heat transfer

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 150

Full-Text Articles in Engineering

Experimental Investigation Of Low Thermal Inertia Thermal Barrier Coatings For Spark Ignition Engines, John Gandolfo Dec 2023

Experimental Investigation Of Low Thermal Inertia Thermal Barrier Coatings For Spark Ignition Engines, John Gandolfo

All Theses

The application of thermal barrier coatings (TBCs) in spark ignition (SI) engines has historically been avoided due to the knock penalty associated with higher surface temperatures induced by the ceramic layer. However, advances in low thermal inertia coatings (i.e., temperature swing coatings) that combine low thermal conductivity with low volumetric heat capacity can prevent excessively high surface temperatures during the intake stroke and reduce or avoid knock while improving performance and efficiency. This thesis experimentally evaluates the effectiveness of these low thermal inertia coatings in a single-cylinder research engine representative of modern SI engines.

First, four pistons coated with a …


Evaluation Of Digital Twin Approaches For Thermal Modeling And Energy Optimization For Existing Buildings, Jason Bastie Muermann Sep 2023

Evaluation Of Digital Twin Approaches For Thermal Modeling And Energy Optimization For Existing Buildings, Jason Bastie Muermann

Theses and Dissertations

Residential, commercial, and industrial building sectors in the United States were responsible for 42% of the nation’s consumption of 100.2 quadrillion BTUs of energy in 2019 [1]. 80% of the nation’s energy is sourced from fossil fuels, including coal, natural gas, and petroleum. Fossil fuels are known contributors to carbon emissions and climate change, making energy reduction vital. Consequently, New Jersey Department of Military and Veterans Affairs (NJDMAVA) is tasked with evaluating energy consumption and efficiency in all New Jersey Army National Guard (NJARNG) facilities, as mandated by TAG Policy Letter 18-5, Executive Order 13990, and the Energy Independence and …


Measurement Of Conduction, Radiation, And Convection Thermal Energy To Assess Baking Performance In Residential Ovens., Sean Simpson Aug 2023

Measurement Of Conduction, Radiation, And Convection Thermal Energy To Assess Baking Performance In Residential Ovens., Sean Simpson

Electronic Theses and Dissertations

Residential ovens are complicated thermal environments capable of delivering convection, conduction, and radiation heat transfer to food. The amount and mode of heat transfer can change based on the design of the oven cavity, cooling systems, and oven cycle algorithms. Studies have shown that the changes in one heat transfer mode can have an impact on the quality of baked goods. The many variables involved make designing residential ovens a time consuming and costly process. The goal of this study is to adapt thermal energy sensing technology to collect energy data from a residential oven and develop correlations to quality …


Heat Transfer To Rolling Or Sliding Drops On Inclined Heated Superhydrophobic Surfaces, Joseph Merkley Furner Jul 2023

Heat Transfer To Rolling Or Sliding Drops On Inclined Heated Superhydrophobic Surfaces, Joseph Merkley Furner

Theses and Dissertations

This thesis examines the time resolved heat transfer to drops rolling or sliding along inclined, subcritical heated non-wetting surfaces. Results were experimentally obtained using IR imaging for a smooth hydrophobic surface and post as well as rib structured superhydrophobic surfaces of varying solid fraction (f_s = 0.06 - 0.5). Tests were performed at varying inclination angle (α = 10, 15, 20, and 25°), drop volume (12, 20, 30, and 40 μL), and surface temperature (T_w = 50, 65, and 80 °C). Rib structured superhydrophobic surfaces were explored for drops moving parallel and perpendicular to the rib structures. The findings indicate …


Thermal Atomization Of Impinging Drops On Superheated Superhydrophobic Surfaces, Eric Lee May 2023

Thermal Atomization Of Impinging Drops On Superheated Superhydrophobic Surfaces, Eric Lee

Theses and Dissertations

Drop impact on a surface has an effect on nearly every industry and this impact may have adverse effects if not controlled. Superhydrophobic (SH) surfaces have been created with the extreme ability to repel water. These surfaces exist in nature but may also be fabricated using modern techniques. This thesis explores heat transfer from these SH surfaces to drops impacting them. This thesis is devoted to increasing the breadth of knowledge of thermal atomization during drop impingement on superheated SH surfaces. When a water drop impinges vertically on a horizontal superheated surface, intense atomization can occur. The atomization is caused …


Thermal Boundary Condition Effects On Local Supercritical Co2 Heat Transfer Trends In Tubes, Nicholas C. Lopes Apr 2023

Thermal Boundary Condition Effects On Local Supercritical Co2 Heat Transfer Trends In Tubes, Nicholas C. Lopes

Doctoral Dissertations and Master's Theses

Supercritical carbon dioxide (sCO2) is a promising heat transfer fluid for the refrigeration and power generation industries due to its unique thermal properties and low environmental impact. To understand it as an alternative to traditional working fluids, the thermophysical and heat transfer phenomena of sCO2 are often studied using simplified geometries (tubes). Focus has been placed on investigating averaged heat transfer trends under an array of flow conditions with either a constant wall heat flux, constant wall temperature, or conjugate thermal boundary condition. Less emphasis has been placed on studying local sCO2 heat transfer developments. Tubular sCO2 numerical models that …


Thermal Analysis Based Design Of Hollow Shaft For Improved Cooling Of Induction Motors, Isabelle Dinh Jan 2023

Thermal Analysis Based Design Of Hollow Shaft For Improved Cooling Of Induction Motors, Isabelle Dinh

Electronic Theses and Dissertations

This thesis investigates methods of implanting a forced liquid convection heat recovery system within an induction motor’s shaft to cool the rotor.

The objective is to design a hollow shaft that can meet the target goals of keeping the components under an average temperature of 100℃ under different motor power conditions. Three hollow shaft design cases were studied at steady state conditions to evaluate their heat transfer performance and surface temperature to meet the goals of the study. This includes the design of a counterflow, counterflow with fins, and duct design.

It is found that third design is able to …


Measurement Of Low-Speed Impinging Jet Structure Using Temperature Sensitive Paint, Arthur Dean Woodworth Dec 2022

Measurement Of Low-Speed Impinging Jet Structure Using Temperature Sensitive Paint, Arthur Dean Woodworth

Masters Theses

Temperature sensitive paint (TSP) is used to analyze surface flow structures driven by a jet impinging on a heated steel sheet. Temperature and Nusselt number images are calculated from CCD images of the TSP surface. TSP calibration is discussed. Skin friction data is obtained from the temperature images.

Data is collected for metal and 3D-printed plastic nozzles of varying shape and size at one or two jet airspeeds depending on the nozzle. For the circular nozzles, data is collected for four Reynolds numbers at impinging angles of 90, 70, and 50 degrees. For the elliptical nozzles and the star-shaped nozzle, …


The Deflection And Heat Transfer Analysis Of Injection Mold Cavity With Sla Cooling Channel Insert, Olumide Temidayo Aladesiun Dec 2022

The Deflection And Heat Transfer Analysis Of Injection Mold Cavity With Sla Cooling Channel Insert, Olumide Temidayo Aladesiun

Theses and Dissertations

Fast cooling in injection molding is the critical in the process economy. Among many different cooling channel designs available, conformal cooling offers the best and the most efficient cooling. However, limited awareness, accessibility, complexity, cost, knowledge, and experience limit the use of conformal cooling channels to be used into the mold in a molding process.

Typically, SLM(Selective Laser Melting) method is used to create cavity inserts with conformal cooling channels, however, due to the difficulties listed above, applications of conformal cooling channels are very limited. For an inexpensive alternative SLA (Stereolithography Apparatus) can print cavity inserts with conformal cooling channels. …


Biomass Characterization And Insulation Optimization Studies, Hussein Awad Kurdi Saad Nov 2022

Biomass Characterization And Insulation Optimization Studies, Hussein Awad Kurdi Saad

Doctoral Dissertations and Master's Theses

This study indicates how biomass materials can be effectively used as naturally sustainable alternatives to insulation materials. Barley grains and oak leaves, straw, and jute are collected, and crushed into powders/ chopped pieces. The physical characteristics are measured to characterize each powder. The biomass powder reinforced composites are manufactured in varying weight ratios. The density and thermal conductivity of composite materials are measured. The properties of composites compared to those of commercial insulation materials are found to be close to them. Furthermore, genetic algorithms (GA) can be used to achieve multi-objective optimization entailing maximizing insulation (minimizing heat transfer) and simultaneously …


Droplet-Based Two-Phase Thermal Management, Junhui Li Aug 2022

Droplet-Based Two-Phase Thermal Management, Junhui Li

McKelvey School of Engineering Theses & Dissertations

The rapid development of electronic systems with ever-higher power densities in a wide range of applications requires new advanced thermal management methods. Droplet-based two-phase thermal management technologies are considered promising solutions to conquer the cooling challenges in the electronic industries. The heat transfer behavior of droplets is based on several important fundamental processes, such as droplet evaporation, droplet impact on heated surfaces, and molten droplet impact. In this dissertation, four research projects are completed to explore the insights of these fundamental processes. For droplet evaporation, I introduce an investigation of diffusion confinement of droplets evaporating on a supported pillar structure. …


Flow And Thermal Transport In Additively Manufactured Metal Lattices Based On Novel Unit-Cell Topologies, Inderjot Kaur Aug 2022

Flow And Thermal Transport In Additively Manufactured Metal Lattices Based On Novel Unit-Cell Topologies, Inderjot Kaur

Theses and Dissertations

The emergence of metal Additive Manufacturing (AM) over the last two decades has opened venues to mitigate the challenges associated with stochastic open-cell metal foams manufactured through the traditional foaming process. Regular lattices with user-defined unit cell topologies have been reported to exhibit better mechanical properties in comparison to metal foams which extend their applicability to multifunctional heat exchangers subjected to both thermal and mechanical loads. The current study aims at investigating the thermal-hydraulic characteristics of promising novel unit cell topologies realizable through AM technologies. Experimental investigation was conducted on four different topologies, viz (a) Octet, (b) Face-diagonal (FD) cube, …


Development And Applications Of A Sensor For Measurement Of Different Modes Of Heat Transfer On Foods In A Residential Oven., Kervins Petit-Bois Aug 2022

Development And Applications Of A Sensor For Measurement Of Different Modes Of Heat Transfer On Foods In A Residential Oven., Kervins Petit-Bois

Electronic Theses and Dissertations

Thermal characterization of an oven is an important part of designing an oven. Understanding how changes in cooking algorithm, oven construction, and oven materials affect cooking performance is critical in ensuring that an oven is properly designed. Often temperature data is used to characterize oven behavior, but this neglects the mode of heat transfer used to achieve these temperatures. Several studies have compared the different modes of heat transfer and cooking performance and have shown that cooking performance in radiation dominated modes are different than in convection dominated modes. The goal of this study is to develop a heat flux …


Mmteg Heatsink Design, Peyton Nienaber, Kadin Feldis, Alec Savoye, Jack Waeschle Jun 2022

Mmteg Heatsink Design, Peyton Nienaber, Kadin Feldis, Alec Savoye, Jack Waeschle

Mechanical Engineering

In this document, Cal Poly Senior Design Team F16 presents a summary of its work developing a suitable heatsink for Gas Technology Institute’s Methane Mitigation Thermoelectric Generator. After several months of iterating between experimental testing and simulated heat transfer, a suitable prototype was selected for use in further refining simulation parameters. This was called the structural prototype and it allowed Team F16 to confirm several remaining unknowns relating to component thermal conductivity. All documentation of this process can be found in Preliminary, Critical, and Interim Design Review documents (PDR, CDR, IDR), included in this report. Having a realistic model …


Thermal Management Using Liquid-Vapor Phase Change In Nanochannels, Sajag Poudel May 2022

Thermal Management Using Liquid-Vapor Phase Change In Nanochannels, Sajag Poudel

Dissertations - ALL

Superior wettability of porous medium marks their potential to be used in the field of thermal management employing phase-change heat transfer. Comprehending the phenomena of wicking and liquid-vapor phase-change in micro/nano structured surfaces are key aspects towards advancing heat transfer solutions. In this work, fundamental understanding of droplet wicking, thin-film evaporation, and their subsequent application of heat-flux removal for cooling technology is first reported. The latter part of the dissertation is related to the disjoining pressure driven flow of nanoscale liquid film and liquid-vapor phase change in nano confinement. First, experimental and numerical investigation of droplet wicking in ∼728 nm …


Free Convection Heat Transfer From Plates, Alexa Moreno May 2022

Free Convection Heat Transfer From Plates, Alexa Moreno

Chemical Engineering Undergraduate Honors Theses

The purpose of this honors thesis is to create an experiment for the CHEG Lab I course. This report explains the motivation for creating this heat convection experiment, the results of performing the experiment, and provides recommendations for future work on this experiment. Multiple experiments were performed to assess materials and parameters to be investigated. It was determined that a 0.5” plate has smaller percent error and accommodates for the desired timeframe for a Lab I experiment compared to the first plate used (1.5” thickness). Recommendations for expanding on this project include adding experiments using vertical geometry for heat convection …


Thermodynamic Analysis Of A Novel Cycle For Nuclear Smr And Heat Transfer Performance Validation Of The Related Supercritical Working Fluids, Benjamin M. Pepper May 2022

Thermodynamic Analysis Of A Novel Cycle For Nuclear Smr And Heat Transfer Performance Validation Of The Related Supercritical Working Fluids, Benjamin M. Pepper

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Currently, all operating nuclear power facilities in the U.S. follow the same general design and process: light-water reactors boil water into steam using bundles of nuclear fuel rods as a heat source, pumping that steam through a turbine which powers a generator to produce clean year-round electricity. Water is an effective coolant, but other facilities around the world have demonstrated the ability to use non-water-based coolants in nuclear reactor designs, which consequently have their own trade-offs. Some positive consequences of using different reactor designs include enhanced safety, better economics, and cheaper clean consumer energy. The work described in this paper …


Thermal Transport To Impinging Droplets On Superhydrophobic Surfaces, Jonathan C. Burnett Dec 2021

Thermal Transport To Impinging Droplets On Superhydrophobic Surfaces, Jonathan C. Burnett

Theses and Dissertations

An analytical model is developed to quantify the heat transfer to droplets impinging on heated superhydrophobic (SH) surfaces. Integral analysis is used to incorporate an apparent temperature jump at the superhydrophobic surface as a boundary condition. This Thesis considers the scenario of both isotropic and anisotropic slip, as would be realized on post-cavity style and rib-cavity style SH surfaces. This thermal model is combined with a hydrodynamic model which incorporates velocity slip at the surface. Use of the two models allows determination of the overall cooling effectiveness, a metric outlined in contemporary work. The effect of varying velocity slip and …


Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky Dec 2021

Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky

UNLV Theses, Dissertations, Professional Papers, and Capstones

Heat pipes are used to transfer heat through phase change in a liquid/vapor contained in a metal tube. They are passive devices that require no pumps to circulate the fluid and can transfer heat far more efficiently than a solid copper rod of the same diameter. They are commonly used in laptop computers where copper heat pipes filled with water take heat away from the CPU and transfer the heat to air through a heat exchanger. Heat pipes were also used in the Kilopower nuclear reactor where higher temperatures required sodium as the working fluid with stainless steel tubes. Computer …


Investigation Of Microdroplet Generation, Morphological Evolution, And Applications Under Quasi-Steady And Dynamic States, Li Shan Aug 2021

Investigation Of Microdroplet Generation, Morphological Evolution, And Applications Under Quasi-Steady And Dynamic States, Li Shan

McKelvey School of Engineering Theses & Dissertations

Microscale droplets are commonly encountered in the fields of materials processing, thermal fluids, and biology. While these droplets are naturally occurring, recent advances in microfabrication have enabled researchers to harness their enhanced transport characteristics for numerous laboratory and industrial applications from controlled chemical synthesis to inkjet printing and thermal management. Smaller droplets have larger specific surface area and a greater perimeter-to-area ratio when resting on a surface (i.e., sessile), which accelerates processes occurring at droplet surfaces like evaporation, chemical reaction, or combustion. The demand for microdroplets with smaller and more uniform sizes has motivated investigation of how such droplets can …


Optimizing Heat Pipes With Partially-Hybrid Mesh-Groove Wicking Structures And Its Capillary-Flowing Analysis By Simulation, Guanghan Huang Jul 2021

Optimizing Heat Pipes With Partially-Hybrid Mesh-Groove Wicking Structures And Its Capillary-Flowing Analysis By Simulation, Guanghan Huang

Theses and Dissertations

Heat pipes are known as efficient two-phase heat transfer devices and widely utilized in thermal management of power plants and electronics. The hybrid mesh-groove wick promises to attain a higher thermal performance of the heat pipe by balancing the permeability and capillarity. However, traditional fully hybrid mesh-groove wick presents considerable condensation thermal resistance due to the condensed quiescent working fluid and thick, saturated wick.

In this study, a novel partially hybrid mesh-groove wick has been proposed to enhance the evaporation of L-shaped copper-ethanol heat pipes. L-shaped heat pipe promotes high-efficient draining of condensed liquid by gravity, while traditional straight-shaped heat …


Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel May 2021

Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel

Doctoral Dissertations and Master's Theses

The accuracy of modern state-of-practice computational fluid dynamics approaches in predicting the cooling effectiveness of a perforated plate film-cooling arrangement is evaluated in ANSYS Fluent. A numerical investigation is performed using the Reynolds Averaged Navier Stokes equations and compared to NASA Glenn’s available Turbulent Heat Flux 4 experimental measurements collected as a part of the Transformational Tools and Technologies Project. A multiphysics approach to model heat conduction through the solid geometry is shown to offer significant improvements in wall temperature and film effectiveness prediction accuracy over the standard adiabatic wall approach. Additionally, localized gradient-based grid adaption is analyzed using the …


Binary Particle Mixtures As A Heat Transfer Media In Shell-And-Plate Moving Packed Bed Heat Exchangers, Chase Ellsworth Christen May 2021

Binary Particle Mixtures As A Heat Transfer Media In Shell-And-Plate Moving Packed Bed Heat Exchangers, Chase Ellsworth Christen

Boise State University Theses and Dissertations

Solid particles are being considered in several high temperature thermal energy storage systems and as heat transfer media in concentrated solar power (CSP) plants. The downside of such an approach is the low overall heat transfer coefficients in shell-and-plate moving packed bed heat exchangers caused by the inherently low packed bed thermal conductivity values of the low-cost solid media. Choosing the right particle size distribution of currently available solid media can make a substantial difference in packed bed thermal conductivity, and thus, a substantial difference in the overall heat transfer coefficient of shell-and-plate moving packed bed heat exchangers. Current research …


Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu Apr 2021

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu

Senior Theses

An experiment was designed and conducted to explore the relationship between thermal conductivity with free electrons in metal. In the experiment, copper, iron, aluminum, and titanium rods with close diameters were used to carry out the experiment. Each rod was heated up by a heat unit at one end while cooled on the other end with a heat sink to maintain a steady state. DC current was applied to rods in the direction along, as well as against, the heat flow. Thermal conductivities were measured in these two situations for each rod. Results showed electrons do dominate thermal flow inside …


Accuracy And Computational Cost Assessment Of Radiation Solvers For Combustion Simulations, Chloe David Apr 2021

Accuracy And Computational Cost Assessment Of Radiation Solvers For Combustion Simulations, Chloe David

Master's Theses (2009 -)

High-fidelity combustion simulations necessitate the accurate and efficient calculation of radiative heat transfer. A successful radiation calculation requires the use of a spectral model, which describes the variation of radiative properties across the entire electromagnetic spectrum, and a radiative transfer equation (RTE) solver, which solves the governing equation for radiation transport. Three primary categories of RTE solvers are the discrete ordinates method (DOM), the spherical harmonics method (SHM), and the photon Monte Carlo (PMC) method. The accuracy and computational cost of each type of RTE solver is compared in detail in this work. The PMC RTE solver is considered the …


Flow And Heat Transfer Characteristics Of Turbulent Swirling Impinging Jets [Thesis], Muhammad Ikhlaq Jan 2021

Flow And Heat Transfer Characteristics Of Turbulent Swirling Impinging Jets [Thesis], Muhammad Ikhlaq

Theses: Doctorates and Masters

Numerous industrial applications rely on impinging jets to impart convective heat and mass transfer in processes ranging from the cooling of electronic devices and gas turbine blades to drying of paper and food products. Conventionally, non-swirling impinging jets have been employed, but some studies have shown that inducing swirl allows better control of uniformity and improved convective fluxes. A better understanding of the underlying physical mechanisms that lead to such behaviour warrants deeper insights into the flow and heat transfer characteristics of impinging jets, both swirling and non-swirling. Whilst important to achieve, the flow field of an impinging jet is …


Heat Transfer Modeling And Optimization Of A Carbonized Microvascular Solar Receiver, Taylor Brown Dec 2020

Heat Transfer Modeling And Optimization Of A Carbonized Microvascular Solar Receiver, Taylor Brown

Boise State University Theses and Dissertations

Concentrating solar power is an emerging renewable energy source. The technology can collect and store thermal energy from the sun over long durations, generating electricity as needed at a later time. Current CSP systems are limited to a maximum operational temperature due to constraints of the working fluid, which limits the maximum possible efficiency of the system. One proposed pathway forward is to utilize a gas phase for the working fluid in the system such as supercritical carbon dioxide.

A composite gas phase modular receiver is being developed by researchers at Boise State University and the University of Tulsa. The …


Material Properties And Heat Transfer Parameters In Compression Molding Of Glass Mat Thermoplastics, Cheng Xu Oct 2020

Material Properties And Heat Transfer Parameters In Compression Molding Of Glass Mat Thermoplastics, Cheng Xu

Electronic Thesis and Dissertation Repository

The compression molding of glass mat thermoplastics (GMT) allows high volume manufacture of composite parts with a short production cycle. Computer simulation is often used to assist process development and optimization. Reliable simulation depends on input of material property parameters and accurate prediction of heat transfer. This thesis developed experimental methods to characterize material property and heat transfer process parameters. Results were obtained by applying the methods to a selected commercial GMT sheet. Heat transfer coefficients including convection coefficients during pre-heating and transfer, as well as contact conductance at sheet-mold interface were estimated by a parameter-fitting approach. Viscoelastic parameters of …


Steady-State And Transient Study Of Flow Boiling In Microchannels With Microgrooves/Micronozzles, Congcong Ren Oct 2020

Steady-State And Transient Study Of Flow Boiling In Microchannels With Microgrooves/Micronozzles, Congcong Ren

Theses and Dissertations

Microchannel flow boiling is one of the most desired cooling solutions for high power electronics. Owing to the high latent heat of vaporization, high heat fluxes can be achieved through phase-change heat transfer. However, the enhancements of (critical heat flux) CHF and heat transfer coefficient (HTC) are usually inhibited by the transitional flow patterns, which highly influence the liquid rewetting. In the past two decades, many techniques have been explored to enhance the liquid rewetting in microscale.

In this dissertation, four parallel micro-grooves fabricated on the bottom of five microchannels (W=200 μm, H=250 μm, L=10 mm) were designed to promote …


Transient Thermal Modeling Of Bioprocessing Equipment, Cody M. Cummings Aug 2020

Transient Thermal Modeling Of Bioprocessing Equipment, Cody M. Cummings

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Bioprocessing is leveraging cells to produce high value, lifesaving products. Precise environmental control is needed to maintain integrity of the bioprocessing production process. Temperature control requires both appropriate equipment choice and correct control parameter selection. To aid in the equipment selection process, enable better understanding of equipment capacity, and enable optimization of control parameters, a transient thermal model of both heat transfer characteristics and control systems was created in silico.