Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 238

Full-Text Articles in Engineering

Metal Coupon Testing In An Axial Rotating Detonation Engine For Wear Characterization, Gary S. North Jan 2020

Metal Coupon Testing In An Axial Rotating Detonation Engine For Wear Characterization, Gary S. North

Browse all Theses and Dissertations

Rotating Detonation Engines (RDE) are being explored as a possible way to get better fuel efficiency for turbine engines than is otherwise possible. The walls of the RDE are subjected to cyclic thermal and mechanical shock loading at rates of approximately 3 KHz, with gas temperatures as high as 2976 K. This project performed testing with Inconel 625 and 304 stainless steel coupons in an RDE outer body to attempt to measure material ablation rates. Significant microstructural changes were observed to include grain growth in both alloys, carbide formation and grain boundary melting in Inconel, and formation of delta ferrite …


The Thermal And Mechanical Characteristics Of Lithiated Peo Lagp Composite Electrolytes, Jacob Michael Denney Jan 2020

The Thermal And Mechanical Characteristics Of Lithiated Peo Lagp Composite Electrolytes, Jacob Michael Denney

Browse all Theses and Dissertations

Lithium-ion batteries are part of a multibillion-dollar industry that strives to meet the demands for an increasingly advanced technological future. Flexible batteries can be easily adapted from emerging novel wearable electronics to electrical vehicles and advanced solar panels. Solid-state batteries can greatly reduce the risk of fire or leaking hazardous materials due to puncture. For the development of solid-state flexible lithium based batteries polymer-ceramic composites are attractive electrolyte candidates because of their combined properties, such as electrical, thermal and mechanical properties, that not only overcome limitations from the base materials but may also render some enhanced performances resulting from the …


Thermal Modeling Of Coordinated Multi-Beam Additive Manufacturing, Rachel Elizabeth Evans Jan 2020

Thermal Modeling Of Coordinated Multi-Beam Additive Manufacturing, Rachel Elizabeth Evans

Browse all Theses and Dissertations

In additive manufacturing (AM), it is necessary to know the influence of processing parameters in order to have better control over the microstructure and mechanical performance of the part. Laser powder bed fusion (LPBF) is a metal AM process in which thin layers of powdered material are selectively melted to create a three-dimensional structure. This manufacturing process is beneficial for many reasons; however, it is limited by the thermal solidification conditions achievable in the available processing parameter ranges for single-beam processing methods. Therefore, this work investigates the effect of multiple, coordinated heat sources, which are used to strategically modify the …


Defect Modeling And Vibration-Based Bending Fatigue Of Additively Manufactured Inconel 718, Wesley Earl Eldt Jan 2020

Defect Modeling And Vibration-Based Bending Fatigue Of Additively Manufactured Inconel 718, Wesley Earl Eldt

Browse all Theses and Dissertations

Additive manufacturing (AM) is convenient for building components with complex features. However, the long-term integrity of these components is uncertain, since AM parts have defects such as pores and rough surfaces. In this work, an analytical model was developed to determine the impact of defects, and a novel bending fatigue test was used to determine the fatigue life of channeled specimens. The analytical model, based off the theory of critical distances, investigates coupled pores and predicts their potential for fatigue failure. This resulted in a maximum allowable pore size and spacing recommendation for coupled defects. Additionally, specimens with through channels …


Optimization Study Of A Combined Wind-Solar Farm For A Specified Demand, Venkat Siddhartha Rama Jan 2020

Optimization Study Of A Combined Wind-Solar Farm For A Specified Demand, Venkat Siddhartha Rama

Browse all Theses and Dissertations

At the present time, using wind and solar energy for producing electricity in the United States is becoming cost competitive. According to Lazard’s 2019 [36] levelized cost of energy (LCOE) analysis of a number of energy sources used for producing electricity in the United States, wind and solar are cheaper than natural gas and coal. While capital, maintenance, operation, and fuel costs are included in LCOE numbers, energy source intermittency is not. Intermittency is an important issue with wind and solar energy sources, but not with natural gas or coal energy sources. Combining wind and solar energy sources into one …


Computational Assessment Of Aortic Valve Function And Mechanics Under Hypertension, Saurav Kadel Jan 2020

Computational Assessment Of Aortic Valve Function And Mechanics Under Hypertension, Saurav Kadel

Browse all Theses and Dissertations

Calcific aortic valve disease (CAVD), the most common valvular heart disorder, is associated with complications such as stroke, heart attack, aortic aneurysm, left ventricular hypertrophy, and ultimately death. While hypertension has been identified as a major risk factor for CAVD, the mechanisms by which it may promote calcification are still unknown. Given the sensitivity of valvular tissue to mechanical stress alterations, the hemodynamic abnormalities linked to hypertension may play a role in the development of CAVD. Further, the effects of hypertension on the left ventricular functionality and coronary flow resistance remain largely uninvestigated. Hence, the objectives of this thesis were …


Adaptive Multi-Fidelity Modeling For Efficient Design Exploration Under Uncertainty, Atticus J. Beachy Jan 2020

Adaptive Multi-Fidelity Modeling For Efficient Design Exploration Under Uncertainty, Atticus J. Beachy

Browse all Theses and Dissertations

This thesis work introduces a novel multi-fidelity modeling framework, which is designed to address the practical challenges encountered in Aerospace vehicle design when 1) multiple low-fidelity models exist, 2) each low-fidelity model may only be correlated with the high-fidelity model in part of the design domain, and 3) models may contain noise or uncertainty. The proposed approach approximates a high-fidelity model by consolidating multiple low-fidelity models using the localized Galerkin formulation. Also, two adaptive sampling methods are developed to efficiently construct an accurate model. The first acquisition formulation, expected effectiveness, searches for the global optimum and is useful for modeling …


Stabilization Of Β-Cristobalite In The Sio2-Alpo4-Bpo4 System, Kathryn Doyle Jan 2020

Stabilization Of Β-Cristobalite In The Sio2-Alpo4-Bpo4 System, Kathryn Doyle

Browse all Theses and Dissertations

Fused silica (silica glass) is transparent in the optical and near-infrared and has a low dielectric constant, making it suitable as a window material for radio frequency radiation. However, at high temperatures (>1100C), fused silica will easily creep and lose dimensional stability. Crystallized silica is much more creep resistant than fused silica. Silica crystallizes to many different structures including quartz, tridymite, and α- and β cristobalite. The only cubic polymorph, which is suitable for both optical and radio frequency transmission in polycrystalline form, is β -cristobalite. Unfortunately, this polymorph transforms to α-cristobalite at ~300C, and the volume change during …


Ab Initio Modeling Of An Electron Transport Layer Interface In Hybrid Perovskite Solar Cells, Krantikumar Subhash Pawar Jan 2020

Ab Initio Modeling Of An Electron Transport Layer Interface In Hybrid Perovskite Solar Cells, Krantikumar Subhash Pawar

Browse all Theses and Dissertations

Hybrid organic-inorganic perovskite solar cell is an emerging technology which has shown the fastest advancement in power conversion efficiency within a few years since introduction, thus making it one of the clean energy breakthroughs. These cells are based on thin-film technology which makes them suitable to manufacture using low-cost solution processing methods. As these types of cells are easily tunable with the selection of different materials, interfacial engineering is an important approach to increasing their efficiency. One of the main hurdles in this regard is the loss caused by the recombination of separated charges. An approach to tackle these issues …


Turbine Passage Vortex Response To Upstream Periodic Disturbances, Mitchell Lee Scott Jan 2020

Turbine Passage Vortex Response To Upstream Periodic Disturbances, Mitchell Lee Scott

Browse all Theses and Dissertations

Flow through the turbine section of gas turbine engines is inherently unsteady due to a variety of factors, such as the relative motion of rotors and stators. In low pressure turbines, periodic wake passing has been shown to impact boundary layer separation, blade surface pressure distribution, and loss generation. The effect of periodic disturbances on the endwall flow is less understood. Endwall flow in a low-pressure turbine occurs in the boundary layer region of the flow through the blade passage where the blade attaches to the hub in the turbine. The response of an endwall vortical structure, the passage vortex, …


Hierarchical Carbon Structures With Vertically- Aligned Nanotube Carpets For Oil-Water Separation Under Different Conditions, Kimia Kiaei Jan 2019

Hierarchical Carbon Structures With Vertically- Aligned Nanotube Carpets For Oil-Water Separation Under Different Conditions, Kimia Kiaei

Browse all Theses and Dissertations

The primary purpose of this study is to investigate the role of surface nano-structuring in fluid separation. It is hypothesized that hierarchical carbon structures consisting of aligned carbon nanotube arrays strongly adhered to the surface of porous carbon solids such as fabric and foam, can be used for separation of polar and non-polar fluids by selective wettability of one fluid and rejection of another. The vertically-aligned carbon nanotube arrays, as synthesized, possess super hydrophobicity demonstrated by high water contact angle on their surfaces. On the other hand, they are incredibly oleophilic, showing a high affinity to adsorb oil. These properties …


Preparation And Characterization Of Porous Pdms For Printed Electronics, Eyad Khalid M. Balbaid Jan 2019

Preparation And Characterization Of Porous Pdms For Printed Electronics, Eyad Khalid M. Balbaid

Browse all Theses and Dissertations

Fabricating an elastomeric substrate with internal features could provide a novel structure with distinctive mechanical properties that allow them to stretch, bend and absorb the impact force. To date, polydimethylsiloxane (PDMS) is a great candidate as a substrate for flexible electronic applications, due to easy fabrication, high stability and low cost. In the current thesis, porous PDMS samples are fabricated and characterized based on the particle size and the fusion of salt and sugar treated micro-regions. The liquid PDMS is prepared by mixing the silicon elastomer base (Sylgard 184) and elastomer curing agent using volume ration 10:1. The salt and …


Design And Manipulation Of A Power-Generating System With High-Temperature Fuel Cells For Hypersonic Applications, Jack Randolph Chalker Jan 2019

Design And Manipulation Of A Power-Generating System With High-Temperature Fuel Cells For Hypersonic Applications, Jack Randolph Chalker

Browse all Theses and Dissertations

Current hypersonic vehicles tend to be incapable of producing onboard power with traditional generators due to their use of supersonic combusting ramjets (scramjets). Because of this, they seek additional energy sources for supporting advanced electronics or other auxiliary power-dependent devices while requiring elaborate thermal management systems to combat temperatures exceeding 700ºC. The incorporation of Solid Oxide Fuel Cell (SOFCs) stacks is an efficient solution, capable of generating large quantities of power through the use of natural fuel sources at high temperatures. Developments in this thesis include the design, construction, and support of a system operating at hypersonic-environment conditions with a …


Design And Implementation Of Periodic Unsteadiness Generator For Turbine Secondary Flow Studies, Nathan James Fletcher Jan 2019

Design And Implementation Of Periodic Unsteadiness Generator For Turbine Secondary Flow Studies, Nathan James Fletcher

Browse all Theses and Dissertations

A primary source of periodic unsteadiness in low-pressure turbines is the wakes shed from upstream blade rows due to the relative motion between adjacent stators and rotors. These periodic perturbations can affect boundary layer transition, secondary flow, and loss generation. In particular, for high-lift front-loaded blades, the secondary flowfield is characterized by strong three-dimensional vortical structures. It is important to understand how these flow features respond to periodic disturbances. A novel approach was taken to generate periodic unsteadiness which captures some of the physics of turbomachinery wakes. Using stationary pneumatic devices, pulsed jets were used to generate disturbances characterized by …


Blended Wing Design Considerations For A Next Generation Commercial Aircraft, Jay Abhilash Vora Jan 2019

Blended Wing Design Considerations For A Next Generation Commercial Aircraft, Jay Abhilash Vora

Browse all Theses and Dissertations

The current aircraft design has not changed significantly in the last few decades. Growing environmental concerns and fuel prices are driving manufacturers to develop unconventional but efficient aircraft configurations. The blended wing body (BWB) configuration provides an alternate and more efficient means of subsonic travel. The BWB aircraft replaces the traditional wings and fuselage with hybrid wing shape where the fuselage and wings have integrated. Major aircraft manufacturers are researching the BWB concept incorporating electric propulsion for civil transport use. In this research a 300 passenger BWB aircraft aerodynamic shape is designed. This aircraft is used to assess the aerodynamic …


Effects Of Lubrication Starvation On Flash Temperature For Thermal Mixed Elastohydrodynamic Gear Contacts, Danielle D. Massé Jan 2019

Effects Of Lubrication Starvation On Flash Temperature For Thermal Mixed Elastohydrodynamic Gear Contacts, Danielle D. Massé

Browse all Theses and Dissertations

Lubrication is provided to the gear trains in automotive and aerospace transmission systems to prevent mechanical contact through the formation of a full lubricant film, which in turn removes heat generated at the gear contact surfaces. When debris blocks the inlet nozzle, the flow of lubricant is restricted and mechanical components experience lubrication starvation. Under starved lubrication the temperatures of the contact surfaces become elevated which can lead to the formation of a weld between them, a catastrophic failure mode called scuffing. For spur gears, the occurrence of scuffing is due to high sliding in the vicinity of the root …


An Investigation On Spur Gear Rolling Contact Fatigue Crack Initiation And Crack Propagation Under Ehl Condition, Vignesh Dharmajan Jan 2019

An Investigation On Spur Gear Rolling Contact Fatigue Crack Initiation And Crack Propagation Under Ehl Condition, Vignesh Dharmajan

Browse all Theses and Dissertations

Pitting is a rolling contact fatigue phenomenon commonly observed in mechanical rolling elements, such as gears and bearings. In case of gear contacts, pitting usually takes place in the dedendum region, where both sliding and contact load are high. In this study, a model is developed to predict surface breaking crack formation fatigue lives, including both nucleation and propagation stages, for spur gear contacts operating under mixed elastohydrodynamic lubrication (EHL) condition. The model utilizes a gear load distribution model for tooth contact Analysis. A mixed EHL formulation is implemented to evaluate the surface normal pressure and tangential shear, incorporating the …


Simulation, Experimentation, Control And Management Of A Novel Fuel Thermal System, Austin L. Tipton Jan 2019

Simulation, Experimentation, Control And Management Of A Novel Fuel Thermal System, Austin L. Tipton

Browse all Theses and Dissertations

Modern aircraft experience increasing thermal loads from electronics, electromechanical actuators, and directed energy weapons. These aircraft also have a reduced ability to transfer thermal energy to the atmosphere due to the use of composite skins and a limited number of air intake ports. For aircraft that use fuel as a heatsink, these factors can cause the fuel at points of the system to exceed temperature limits, which can result in fuel coking, damage to subsystems, and even complete system failure. This thesis investigates the fuel thermal management shortcomings of contemporary aircraft systems and suggests a new methodology to extend performance. …


Transmission Electron Microscopy Analysis Of Silicon-Doped Beta-Gallium Oxide Films Grown By Pulsed Laser Deposition, Cynthia Thomason Bowers Jan 2019

Transmission Electron Microscopy Analysis Of Silicon-Doped Beta-Gallium Oxide Films Grown By Pulsed Laser Deposition, Cynthia Thomason Bowers

Browse all Theses and Dissertations

Due to the large band gap of β-Ga2O3 and recent improvements toward high quality native substrates and the ability to shallow dope epitaxial β-Ga2O3 it is an attractive material for applications in power electronic devices. Such devices require advances in the areas of thin film growth and carrier concentration control to deliver high mobility films appropriate for the device structures. Transmission electron microscopy (TEM) analysis can provide information concerning doping, crystal structure, and internal strain which will be valuable to assess the role of defects and impurities on the transport properties for feedback to optimize the bulk and epitaxial growth …


Aerodynamics Of Fan Blade Blending, Clint J. Knape Jan 2019

Aerodynamics Of Fan Blade Blending, Clint J. Knape

Browse all Theses and Dissertations

Blending is a method of fan and compressor blade repair. The goal of the blending process is to remove stress concentration points such as cracks and nicks along the leading, trailing, or tip edges of the blade. The stressed areas are typically removed by grinding or cropping away the surrounding material. For integrally bladed rotor (IBR) disks, repairing a damaged blade is much more economical than replacing the entire disk. However, the change in shape of the blade will change the local aerodynamics and result in mistuning, both structurally and aerodynamically. In a worst case scenario, the change in the …


Analytical And Experimental Investigation Of Time-Variant Acceleration Fields, Justin A. Williams Jan 2019

Analytical And Experimental Investigation Of Time-Variant Acceleration Fields, Justin A. Williams

Browse all Theses and Dissertations

Devices expected to operate in elevated or non-standard acceleration fields are often tested in similar conditions prior to deployment. Typically these tests only simulate steady-state acceleration fields in one direction. However, real acceleration fields often vary both directionally and temporally. Designing experiments to produce these conditions requires careful forethought and analysis in order to understand the emergent acceleration components that result from the methodology. An experiment was designed and executed on a horizontal centrifuge in which the radial acceleration varied sinusoidally between -10 < a_r < 10 g. Negative acceleration was achieved by rotating the test article relative to the radial acceleration vector using a servo motor. A model was developed that predicted the acceleration field at every point along the test article. The model provided important information such as the acceleration magnitude and direction anywhere on the test device at any point in time. This model was then used to optimize the velocity profile of the servo motor to minimize experimental artifacts.


Rasters Vs Contours For Thin Wall Ultem 9085 Fdm Applications, Vausman Kota Jan 2019

Rasters Vs Contours For Thin Wall Ultem 9085 Fdm Applications, Vausman Kota

Browse all Theses and Dissertations

Currently many components are additively manufactured via fused deposition modeling (FDM). However, FDM results in gaps between passes which produces a poor surface finish and porous material that is difficult to hold pressure. Commercial scale air systems require a pressure to be maintained within thin walled components with minimal post processing and clean up after fabrication. A design of experiments (DOE) was created to identify the optimal raster vs contour ratio for UTLEM 9085 CG fabricated using FDM at different build angles and wall thicknesses. A custom-built pressurized test system was developed, the leak rates were calculated and the surfaces …


Adaptive Identification Of Classification Decision Boundary Of Turbine Blade Mode Shape Under Geometric Uncertainty, Ian M. Boyd Jan 2019

Adaptive Identification Of Classification Decision Boundary Of Turbine Blade Mode Shape Under Geometric Uncertainty, Ian M. Boyd

Browse all Theses and Dissertations

Integrally Bladed Rotors (IBR) of aircraft turbine engines suffer from fluctuations in the dynamic response that occurs due to blade to blade geometric deviations. The Stochastic Approach for Blade and Rotor Emulation (SABRE) framework has been used to enable a probabilistic study of mistuned blades in which a reduced order modeling technique is applied in conjunction with sets of surrogate models, called emulators, to make predictions of mistuned mode shapes. SABRE has proven useful for non-switching mode shapes. However, switching mode shapes have non-stationary or discontinuous response surfaces which reduce the accuracy of the surrogate models used in SABRE. To …


Deposition Of Nanoparticles Or Thin Films Via Magnetron Sputtering Towards Graphene Surface Functionalization And Device Fabrication, Bridget Jul Larson Jan 2019

Deposition Of Nanoparticles Or Thin Films Via Magnetron Sputtering Towards Graphene Surface Functionalization And Device Fabrication, Bridget Jul Larson

Browse all Theses and Dissertations

Graphene, a 2-dimensional single layer of carbon, has high carrier mobility, strength and electrical conductivity. Due to the absence of a band gap and chemical reactivity, pristine graphene has less competitiveness in semiconductors and sensors. Functionalizing graphene is imperative in the development of advanced applications. Among various wet chemical or physical vapor deposition, magnetron sputtering is cost-effective, minimum maintenance, user-friendly, and can be used to rapidly deposit nano-particulates or thin films with less contaminations on any substrates surface. This study is to investigate the morphology evolution of the deposited films using magnetron sputtering and to find appropriate conditions for nanoparticulate …


Using Cfd To Improve Off-Design Throughflow Analysis, Troy J. Lanchman Jan 2019

Using Cfd To Improve Off-Design Throughflow Analysis, Troy J. Lanchman

Browse all Theses and Dissertations

In turbomachinery design, complex internal flows give rise to significant losses and blockage whose effects are difficult to properly analyze without detailed computational fluid dynamics (CFD) methods or experiments. In a typical design method, CFD is used in conjunction with simpler throughflow or cascade codes to hasten the process. However, the lesser physical accuracy of the design codes demands the inclusion of models to improve the accuracy of the throughflow codes. This thesis aims to use CFD data to generate improved loss and blockage models for a 2D compressor throughflow code by matching throughflow data to CFD data using optimizations. …


Unsteady Effects Of A Pulsed Blowing System On An Endwall Vortex, Molly Hope Donovan Jan 2019

Unsteady Effects Of A Pulsed Blowing System On An Endwall Vortex, Molly Hope Donovan

Browse all Theses and Dissertations

The low-pressure turbine is an important component of a gas turbine engine, powering the low-pressure spool which provides the bulk of the thrust in medium- and high-bypass engines. It is also a significant fraction of the engine weight and complexity as it can comprise up to a third of the total engine weight. One way to drastically reduce the weight of the low-pressure turbine is to utilize high lift blades. To advance high-lift technology, the Air Force Research Laboratory (AFRL) designed the L2F blade profile, which was implemented in the linear cascade at AFRL/RQT’s low speed wind tunnel facility. The …


Multi-Sensor Approach To Determine The Effect Of Geometry On Microstructure In Additive Manufacturing, Joseph R. Walker Jan 2019

Multi-Sensor Approach To Determine The Effect Of Geometry On Microstructure In Additive Manufacturing, Joseph R. Walker

Browse all Theses and Dissertations

Laser powder bed fusion (LPBF) is an additive manufacturing technique used for making complex parts through a layer-by-layer process with fine feature resolution. However, the layer-by-layer process, with complex scanning patterns within each layer, introduces variability in thermal behavior leading to inconsistent microstructure and defects. The in- situ process monitoring approach in this work uses sensors including a high-speed visible camera, thermal camera, and spectrometer to evaluate each location in the LPBF process. Each sensor focuses on a different process phenomenon such as the melt pool or thermal behavior. An experimental study, using metallographic analysis and collection of sensor data, …


Development Of A Computer Program For Transient Heat Transfer Coefficient Studies, Sri Prithvi Samrat Samayamantula Jan 2019

Development Of A Computer Program For Transient Heat Transfer Coefficient Studies, Sri Prithvi Samrat Samayamantula

Browse all Theses and Dissertations

At the present time, the magnitude of transient convective heat transfer is approximated using heat transfer coefficient correlations developed for steady state conditions. This is done by necessity, as transient heat transfer correlations are not readily available. There is a rare transient heat transfer correlation found in the literature, but the number of correlations available can be counted on one hand. In addition, the literature does provide some plots of Nusselt numbers for specific cases of transient convective heat transfer, but these are limited to the specific case for which they were developed. The work presented in this thesis is …


Growth Of Two-Dimensional Molybdenum Disulfide Via Chemical Vapor Deposition, Zachary Durnell Ganger Jan 2019

Growth Of Two-Dimensional Molybdenum Disulfide Via Chemical Vapor Deposition, Zachary Durnell Ganger

Browse all Theses and Dissertations

Graphene has successfully been a 2D material applied in various fields, but it is not the most appropriate candidate for many electronic devices unless its bandgap structure is tuned through functionalization. Among all other 2D material families, transition metal dichalcogenides (TMDs), represented by molybdenum disulfide (MoS2), are promising and emerging in power electronics due to their large direct bandgap and other electronic properties. 2D MoS2 has been fabricated through different approaches such as mechanical exfoliation, chemical etching, and chemical vapor deposition (CVD). The current major challenge in fabricating 2D MoS2 films is to produce a high-quality large-area monolayer film at …


Power/Thermal Interaction Within An Adaptive Turbine Engine, Andrew K. Desomma Jan 2019

Power/Thermal Interaction Within An Adaptive Turbine Engine, Andrew K. Desomma

Browse all Theses and Dissertations

Usually power take off (PTO) with a two-spool turbofan engine has been accomplished via the high pressure (HP) shaft and bleed air from the high-pressure compressor (HPC). The PTO is used to run various aircraft components such as generators and hydraulic pumps, which also produce waste heat. To better understand the coupled transient nature of balancing engine thrust, power take off and thermal management, a transient variable cycle three stream turbofan engine model has been developed to investigate the integrated behavior. The model incorporates many dynamic features including a third-stream heat exchanger as a heat sink for thermal management and …