Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 33

Full-Text Articles in Engineering

Macroscopic Patterning Via Dynamic Self-Assembly And Wrinkling Instability, Hyun Suk Kim Sep 2012

Macroscopic Patterning Via Dynamic Self-Assembly And Wrinkling Instability, Hyun Suk Kim

Open Access Dissertations

My PhD work focuses on developing new methods to create the macroscopic patterns in a simple, robust, and versatile way. For macroscopic pattern formation, we first use flow coating as an assembly technique, uniquely balancing two driving forces: (i) evaporative deposition of nonvolatile solutes at a three-phase contact line and (ii) precision movement of a confined meniscus layer. This balance leads to the formation of line-based patterns that range in height and width from nanometers to microns, with lengths greater than centimeters. Moreover, we couple this deposition methodology with functional ligand chemistry on the nanoparticle surface, which allows us to …


Porous Metal Oxide Materials Through Novel Fabrication Procedures, Nicholas Hendricks Sep 2012

Porous Metal Oxide Materials Through Novel Fabrication Procedures, Nicholas Hendricks

Open Access Dissertations

Porous metal oxide materials, particularly those comprised of silica or titania, find use in many applications such as low-k dielectric materials for microelectronics as well as chemical sensors, micro/nanofluidic devices, and catalyst substrates. For this dissertation, the focus will be on the processing of porous metal oxide materials covering two subjects: hierarchical porosity exhibited over two discrete length scales and incorporation of functional nanomaterials. To generate the porous silica materials, the technique of supercritical carbon dioxide infusion (scCO2) processing was heavily relied upon. Briefly, the scCO2 infusion processing utilizes phase selective chemistries within a pre-organized amphiphilic block copolymer template using …


Modeling Material Transformations In Biorefinement, Vishal Agarwal Sep 2012

Modeling Material Transformations In Biorefinement, Vishal Agarwal

Open Access Dissertations

Lignocellulosic biomass is a significant pool of energy resource, which can be harnessed to supplement or replace the dwindling fossil fuel reserves. This requires development of economically viable means to efficiently convert biomass to biofuels. A major requirement in biofuel industry is to develop highly active, selective and stable catalysts. Zeolites are an important class of micro-porous crystalline solids, and have proven to be effective and stable acid catalysts for a variety of petrochemical and fine-chemical processes. Nitrided zeolites -- i.e., those with Si-O-Si and Si-OH-Al groups substituted by Si-NH-Si and Si-NH2-Al -- have shown promise as shape-selective …


Interactions And Morphology Of Triblock Copolymer - Ionic Liquid Mixtures And Applications For Gel Polymer Electrolytes, Daniel F. Miranda Sep 2012

Interactions And Morphology Of Triblock Copolymer - Ionic Liquid Mixtures And Applications For Gel Polymer Electrolytes, Daniel F. Miranda

Open Access Dissertations

Room temperature ionic liquids (ILs) are a unique class of solvents which are characterized by non-volatility, non-flammability, electrochemical stability and high ionic conductivity. These properties are highly desirable for ion-conducting electrolytes, and much work has focused on realizing their application in practical devices. In addition, hydrophilic and ionophilic polymers are generally miscible with ILs. The miscibility of ILs with ion-coordinating polymers makes ILs effective plasticizers for gel polymer electrolytes. Due to their unique properties, ILs present a means to realize the next generation of energy storage technology. In this dissertation, the fundamental interactions between poly(ethylene oxide) (PEO) and a variety …


Risk Quantification Of Maple Trees Subjected To Wind Loading, Cihan Ciftci Sep 2012

Risk Quantification Of Maple Trees Subjected To Wind Loading, Cihan Ciftci

Open Access Dissertations

Because of property damage and people injuries in, almost, every year in different locations of the earth, unfortunately the topic of understanding trees and their risk assessments under wind forces has not lost its importance since approximately a half of the last century. In contrast to loss its importance, the number of researchers or studies increases with time thanks to inter-disciplinary studies on that topic. In this Thesis, tree dynamics and their risk assessments subjected to wind forces were addressed by two different disciplines (civil engineering and environmental conservation).

To mention includes of this inter-disciplinary study, first, a finite element …


Modeling The Relaxation Dynamics Of Fluids In Nanoporous Materials, John R. Edison Sep 2012

Modeling The Relaxation Dynamics Of Fluids In Nanoporous Materials, John R. Edison

Open Access Dissertations

Mesoporous materials are being widely used in the chemical industry in various environmentally friendly separation processes and as catalysts. Our research can be broadly described as an effort to understand the behavior of fluids confined in such materials. More specifically we try to understand the influence of state variables like temperature and pore variables like size, shape, connectivity and structural heterogeneity on both the dynamic and equilibrium behavior of confined fluids. The dynamic processes associated with the approach to equilibrium are largely unexplored. It is important to look into the dynamic behavior for two reasons. First, confined fluids experience enhanced …


Robust And Scalable Domain Decomposition Methods For Electromagnetic Computations, Georgios Paraschos Sep 2012

Robust And Scalable Domain Decomposition Methods For Electromagnetic Computations, Georgios Paraschos

Open Access Dissertations

The Finite Element Tearing and Interconnecting (FETI) and its variants are probably the most celebrated domain decomposition algorithms for partial differential equation (PDE) scientific computations. In electromagnetics, such methods have advanced research frontiers by enabling the full-wave analysis and design of finite phased array antennas, metamaterials, and other multiscale structures. Recently, closer scrutiny of these methods have revealed robustness and numerical scalability problems that prevent the most memory and time efficient variants of FETI from gaining widespread acceptance. This work introduces a new class of FETI methods and preconditioners that lead to exponential iterative convergence for a wide class of …


Security Issues In Network Virtualization For The Future Internet, Sriram Natarajan Sep 2012

Security Issues In Network Virtualization For The Future Internet, Sriram Natarajan

Open Access Dissertations

Network virtualization promises to play a dominant role in shaping the future Internet by overcoming the Internet ossification problem. Since a single protocol stack cannot accommodate the requirements of diverse application scenarios and network paradigms, it is evident that multiple networks should co-exist on the same network infrastructure. Network virtualization supports this feature by hosting multiple, diverse protocol suites on a shared network infrastructure. Each hosted virtual network instance can dynamically instantiate custom set of protocols and functionalities on the allocated resources (e.g., link bandwidth, CPU, memory) from the network substrate. As this technology matures, it is important to consider …


Modeling The Self-Assembly Of Ordered Nanoporous Materials, Lin Jin Sep 2012

Modeling The Self-Assembly Of Ordered Nanoporous Materials, Lin Jin

Open Access Dissertations

Porous materials have long been a research interest due to their practical importance in traditional chemical industries such as catalysis and separation processes. The successful synthesis of porous materials requires further understanding of the fundamental physics that govern the formation of these materials. In this thesis, we apply molecular modeling methods and develop novel models to study the formation mechanism of ordered porous materials. The improved understanding provides an opportunity to rational control pore size, pore shape, surface reactivity and may lead to new design of tailor-made materials. To attain detailed structural evolution of silicate materials, an atomistic model with …


Dynamics And Kinetics Of Model Biological Systems, Stephen William Mirigian Sep 2012

Dynamics And Kinetics Of Model Biological Systems, Stephen William Mirigian

Open Access Dissertations

In this work we study three systems of biological interest: the translocation of a heterogeneously charged polymer through an infinitely thin pore, the wrapped of a rigid particle by a soft vesicle and the modification of the dynamical properties of a gel due to the presence of rigid inclusions.

We study the kinetics of translocation for a heterogeneously charged polyelectrolyte through an infinitely narrow pore using the Fokker-Planck formalism to compute mean first passage times, the probability of successful translocation, and the mean successful translocation time for a diblock copolymer. We find, in contrast to the homopolymer result, that details …


Chemistry At Silicone - Inorganic Oxide Interfaces, Joseph W. Krumpfer Sep 2012

Chemistry At Silicone - Inorganic Oxide Interfaces, Joseph W. Krumpfer

Open Access Dissertations

This dissertation describes research performed using siloxane polymers. This includes the reactions of siloxane polymers with inorganic oxide surfaces to form covalently attached monolayers, and the electrical properties of crosslinked silicone composite films fabricated by compounding with nickel particles. In addition to these topics, the use of contact line pinning as a practical and controllable method for the deposition of materials on superhydrophobic and chemically patterned surfaces is also described The first chapter provides a general review of siloxane polymer chemistry, focusing in particular on the relationship between molecular structure and physical properties. The use and fabrication of silicone composite …


Catalytic Fast Pyrolysis Of Furan Over Zsm-5 Catalysts: A Model Biomass Conversion Reaction, Yu-Ting Cheng Sep 2012

Catalytic Fast Pyrolysis Of Furan Over Zsm-5 Catalysts: A Model Biomass Conversion Reaction, Yu-Ting Cheng

Open Access Dissertations

Due to its low cost and availability, lignocellulosic biomass is receiving significant attention worldwide as a feedstock for renewable liquid bio-fuels. We have recently shown that zeolites can be added to a pyrolysis reactor to directly make aromatics from solid biomass in one single step in a process called catalytic fast pyrolysis (CFP). The advantage of this approach is that valuable petrochemicals can be made directly from solid biomass in a single catalytic step using zeolite catalysts. However, little is known about the conversion chemistry that occurs within the zeolites during CFP. The objective of this thesis is to identify …


On The Effect Of Elasticity On Drag Reduction Due To Polymer Additives Using A Hybrid D.N.S. And Langevin Dynamics Approach, Arnout Boelens May 2012

On The Effect Of Elasticity On Drag Reduction Due To Polymer Additives Using A Hybrid D.N.S. And Langevin Dynamics Approach, Arnout Boelens

Open Access Dissertations

In this work the effect of elasticity on turbulent drag reduction due to polymers is investigated using a hybrid Direct Numerical Simulation (D.N.S) and Langevin dynamics approach. Simulations are run at a friction Reynolds number of Re_&tau = 560 for 960.000 dumbbells with Deborah numbers of De = 0, De = 1, and De = 10. The conclusions are that it is possible to simulate a drag reduced flow using hybrid D.N.S. with Langevin dynamics, that polymers, like other occurrences of drag reduction, reduce drag through streak stabilization, and that the essential property of polymers and fibers in having a …


A Study On Small Scale Intermittency Using Direct Numerical Simulation Of Turbulence, Saba Almalkie May 2012

A Study On Small Scale Intermittency Using Direct Numerical Simulation Of Turbulence, Saba Almalkie

Open Access Dissertations

Theory of turbulence at small scales plays a fundamental role in modeling turbulence and in retrieving information from physical measurements of turbulent flows. A systematic methodology based on direct numerical simulations of turbulent flows is developed to investigate universality of small scale turbulence. Understanding characteristics of the small scale intermittency in turbulent flows and the accuracy of the models, measurements, and theories in predicting it are the main objectives. The research is designed to address two central questions; 1) possible effects of large scale anisotropies on the small scale turbulence and 2) potential biases in characterizing small scale turbulence due …


Security Issues In Networked Embedded Devices, Danai Chasaki Sr May 2012

Security Issues In Networked Embedded Devices, Danai Chasaki Sr

Open Access Dissertations

Embedded devices are ubiquitous; they are present in various sectors of everyday life: smart homes, automobiles, health care, telephony, industrial automation, networking etc. Embedded systems are well known for their dependability, and that is one of the reasons that they are preferred over general purpose machines in various applications. Traditional embedded computing is changing nowadays mainly due to the increasing number of heterogeneous embedded devices that are, more often than not, interconnected. Security in the field of networked embedded systems is becoming particularly important, because:

1) Connected embedded devices can be attacked remotely.

2) They are resource constrained.

This means, …


Production Of Green Aromatics And Olefins From Lignocellulosic Biomass By Catalytic Fast Pyrolysis: Chemistry, Catalysis, And Process Development, Jungho Jae May 2012

Production Of Green Aromatics And Olefins From Lignocellulosic Biomass By Catalytic Fast Pyrolysis: Chemistry, Catalysis, And Process Development, Jungho Jae

Open Access Dissertations

Diminishing petroleum resources combined with concerns about global warming and dependence on fossil fuels are leading our society to search for renewable sources of energy. In this respect, lignocellulosic biomass has a tremendous potential as a renewable energy source, once we develop the economical processes converting biomass into useful fuels and chemicals.

Catalytic fast pyrolysis (CFP) is a promising technology for production of gasoline range aromatics, including benzene, toluene, and xylenes (BTX), directly from raw solid biomass. In this single step process, solid biomass is fed into a catalytic reactor in which the biomass first thermally decomposes to form pyrolysis …


Accuracy Of Biomass And Structure Estimates From Radar And Lidar, Razi Uddin Ahmed May 2012

Accuracy Of Biomass And Structure Estimates From Radar And Lidar, Razi Uddin Ahmed

Open Access Dissertations

A better understanding of ecosystem processes requires accurate estimates of forest biomass and structure on global scales. Recently, there have been demonstrations of the ability of remote sensing instruments, such as radar and lidar, for the estimation of forest parameters from spaceborne platforms in a consistent manner. These advances can be exploited for global forest biomass accounting and structure characterization, leading to a better understanding of the global carbon cycle. The popular techniques for estimation of forest parameters from radar instruments in particular, use backscatter intensity, interferometry and polarimetric interferometry. This dissertation analyzes the accuracy of biomass and structure estimates …


Tuning The Properties Of Metal-Ligand Complexes To Modify The Properties Of Supramolecular Materials, Ian Henderson May 2012

Tuning The Properties Of Metal-Ligand Complexes To Modify The Properties Of Supramolecular Materials, Ian Henderson

Open Access Dissertations

Supramolecular chemistry is the study of discreet molecules assembled into more complex structures though non-covalent interactions such as host-guest effects, pi-pi stacking, electrostatic effects, hydrogen bonding, and metal-ligand interactions. Using these interactions, complex hierarchical assembles can be created from relatively simple precursors.

Of the supramolecular interactions listed above, metal-ligand interactions are of particular interest due to the wide possible properties which they present. Factors such as the denticity, polarizability, steric hindrance, ligand structure, and the metal used (among others) contribute to a dramatic range in the physical properties of the metal-ligand complexes. Particularly affected by these factors are the kinetic …


Surface Instabilities For Adhesion Control, Chelsea Simone Davis May 2012

Surface Instabilities For Adhesion Control, Chelsea Simone Davis

Open Access Dissertations

Controlling the specific adhesive properties of surfaces is a technologically complex challenge that has piqued the interest of many research groups around the world. While many scientists have used complex topographic and chemically altered surfaces to tune adhesion, others have shown that naturally occurring phenomena, such as elastic instabilities, can impact adhesion. We provide a thorough investigation into the effects of periodic surface buckling instabilities, or wrinkles, on adhesion. Wrinkles are an attractive surface patterning alternative as they form spontaneously over large areas and their dimensions, namely wavelength and amplitude, can be controlled on length scales relevant for adhesion control. …


Effect Of Building Morphology On Energy And Structural Performance Of High-Rise Office Buildings, Mohamed Krem May 2012

Effect Of Building Morphology On Energy And Structural Performance Of High-Rise Office Buildings, Mohamed Krem

Open Access Dissertations

The civil engineering and architectural communities are highly focused, these days, on designing buildings that maximize utilization of energy available from natural resources. This dissertation presents a quantitative study of the effect of high-rise office building morphology on energy and structural performances for the major climates. The parameters of the building morphologies are varied - the building footprint shape, the placement of the structural core/walls, and the building orientation. The energy analysis is performed using Autodesk Ecotect Analysis 2011; while using SAP2000 for the structure analysis and design. The key observations are: 1) the building morphology has a significant effect …


The Oriented-Eddy Collision Model, Michael Bernard Martell Jr. May 2012

The Oriented-Eddy Collision Model, Michael Bernard Martell Jr.

Open Access Dissertations

The physical and mathematical foundations of the Oriented-Eddy Collision turbulence model are provided through a discussion of the Reynolds averaged Navier-Stokes (RANS) equations, probability density functions (PDF), PDF collision models, Reynolds stress transport models (RSTM), and two-point correlations. Behavior of the Oriented-Eddy Collision turbulence model near solid boundaries is examined in depth. The Oriented-Eddy Collision turbulence model treats turbulence in a novel way: the average behavior of a turbulent flow can be modeled as a collection of interacting fluid particles, or eddies, which have inherent orientation. The model is cast in the form of a collection of Reynolds stress transport …


Evaluating Alternative Transportation Financing Approaches: A Conceptual Framework And Analytical Methods, Michael Plotnikov May 2012

Evaluating Alternative Transportation Financing Approaches: A Conceptual Framework And Analytical Methods, Michael Plotnikov

Open Access Dissertations

As states continue to consider taking on more responsibility in transportation, a major issue State Departments of Transportation (DOTs) face relates to financing future transportation investments. At present, many state transportation policymakers and State DOT administrators are considering alternative financing approaches to generate future revenue sources for transportation investments.

This dissertation focuses on several user fee based approaches currently being considered by state transportation policymakers and administrators in the U.S. Examples of such approaches include: increasing the current fuel tax and indexing the fuel tax to inflation; implementing an odometer based vehicle miles traveled (VMT) fee approach through vehicle inspection …


Systematic Synthesis Of Organic Semiconductors With Variable Band Gaps, Christopher Thomas Scilla May 2012

Systematic Synthesis Of Organic Semiconductors With Variable Band Gaps, Christopher Thomas Scilla

Open Access Dissertations

Polymeric materials are attractive candidates for the fabrication of low cost, large area photovoltaic devices. Controlling the band gap of the electroactive polymer is an essential factor in optimizing the resulting devices. In this dissertation, a methodology for the synthesis of well-defined semiconducting materials with tunable band gaps is described. First, the synthesis, characterization, and computational analysis of a variety of trimers consisting of two 3-hexylthiophene units flanking a central moiety consisting of thiophene, or one of the electron donating monomers isothianaphthene or thieno[3,4,b]thiophene will be described. From this analysis the influences of the electronic and steric structure of the …


Power Efficient Continuous-Time Delta-Sigma Modulator Architectures For Wideband Analog To Digital Conversion, Mohammad Ranjbar May 2012

Power Efficient Continuous-Time Delta-Sigma Modulator Architectures For Wideband Analog To Digital Conversion, Mohammad Ranjbar

Open Access Dissertations

This work presents novel continuous-time delta-sigma modulator architectures with low-power consumption and improved signal transfer functions which are suitable for wideband A/D conversion in wireless applications, e.g., 3G and 4G receivers. The research has explored two routes for improving the overall performance of continuous-time delta-sigma modulator. The first part of this work proposes the use of the power efficient Successive-Approximations (SAR) architecture, instead of the conventional Flash ADC, as the internal quantizer of the delta-sigma modulator. The SAR intrinsic latency has been addressed by means of a faster clock for the quantizer as well as full-period delay compensation. The use …


Enhanced Mechanical Performance Of Low Dielectric Constant Thin Films Synthesized In Supercritical Co2, And Sans Studies Of Microemulsions Induced Or Destabilized By Compressed Co2, Alvin Horatio Romang May 2012

Enhanced Mechanical Performance Of Low Dielectric Constant Thin Films Synthesized In Supercritical Co2, And Sans Studies Of Microemulsions Induced Or Destabilized By Compressed Co2, Alvin Horatio Romang

Open Access Dissertations

Block copolymer (BCP) phase segregation and self-assembly into two or more distinct domains are primarily dictated by two parameters: the block volume fraction, f, and the product of the segment-segment interaction parameter and the length of polymer chain, XN. The volume fraction determines a block copolymer's phase segregated morphology, whereas XN dictates its overall segregation strength, or phase stability. In order to achieve smaller domain sizes, the interaction parameter must be increased to compensate for the decrease in chain length. In the melt, PEO-b-PPO-b-PEO (Pluronic) triblock copolymer surfactants do not phase segregate primarily due to their low molecular weights …


Controlling Morphology In Swelling-Induced Wrinkled Surfaces, Derek Breid Feb 2012

Controlling Morphology In Swelling-Induced Wrinkled Surfaces, Derek Breid

Open Access Dissertations

Wrinkles represent a pathway towards the spontaneous generation of ordered surface microstructure for applications in numerous fields. Examples of highly complex ordered wrinkle structures abound in Nature, but the ability to harness this potential for advanced material applications remains limited. This work focuses on understanding the relationship between the patterns on a wrinkled surface and the experimental conditions under which they form. Because wrinkles form in response to applied stresses, particular attention is given to the nature of the stresses in a wrinkling surface. The fundamental insight gained was then utilized to account for observed wrinkle formation phenomena within more …


Acceleration Of Cfd And Data Analysis Using Graphics Processors, Ali Khajeh Saeed Feb 2012

Acceleration Of Cfd And Data Analysis Using Graphics Processors, Ali Khajeh Saeed

Open Access Dissertations

Graphics processing units function well as high performance computing devices for scientific computing. The non-standard processor architecture and high memory bandwidth allow graphics processing units (GPUs) to provide some of the best performance in terms of FLOPS per dollar. Recently these capabilities became accessible for general purpose computations with the CUDA programming environment on NVIDIA GPUs and ATI Stream Computing environment on ATI GPUs. Many applications in computational science are constrained by memory access speeds and can be accelerated significantly by using GPUs as the compute engine. Using graphics processing units as a compute engine gives the personal desktop computer …


Kinetically Trapping Co-Continuous Morphologies In Polymer Blends And Composites, Le Li Feb 2012

Kinetically Trapping Co-Continuous Morphologies In Polymer Blends And Composites, Le Li

Open Access Dissertations

Co-continuous structures generated from the phase separation of polymer blends present many opportunities for practical application. Due to the large interfacial area in such structures and the incompatibility between the components, such non-equilibrium structures tend to coarsen spontaneously into larger sizes and eventually form dispersed morphologies. Here, we utilize various strategies to kinetically stabilize the co-continuous structures in polymer blend systems at nano- to micro- size scales.

In the partially miscible blend of polystyrene and poly(vinyl methyl ether), we took advantage of the spinodal decomposition (SD) process upon thermal quenching, and arrested the co-continuous micro-structures by the addition of nanoparticles. …


Microtechnologies For Mimicking Tumor-Imposed Transport Limitations And Developing Targeted Cancer Therapies, Bhushan Jayant Toley Feb 2012

Microtechnologies For Mimicking Tumor-Imposed Transport Limitations And Developing Targeted Cancer Therapies, Bhushan Jayant Toley

Open Access Dissertations

Intravenously delivered cancer drugs face transport limitations at the tumor site and cannot reach all parts of tumors at therapeutically effective concentrations. Transport limitations also prevent oxygen from distributing evenly in tumors resulting in hypoxia, which plays a critical role in cancer progression. In this dissertation, I present the development of micro-devices that mimic transport limitations of drugs and nutrients on three dimensional tumor tissues, enable visualization and quantification of the ensuing gradients, and enable simple analysis and mathematical modeling of obtained data. To measure the independent effects of oxygen gradients on tumor tissues, an oxygen delivery device that used …


Organic Materials As Templates For The Formation Of Mesoporous Inorganic Materials And Ordered Inorganic Nanocomposites, Christopher Ryan Ziegler Feb 2012

Organic Materials As Templates For The Formation Of Mesoporous Inorganic Materials And Ordered Inorganic Nanocomposites, Christopher Ryan Ziegler

Open Access Dissertations

Hierarchically structured inorganic materials are everywhere in nature. From unicellular aquatic algae such as diatoms to the bones and/or cartilage that comprise the skeletal systems of vertebrates. Complex mechanisms involving site-specific chemistries and precision kinetics are responsible for the formation of such structures. In the synthetic realm, reproduction of even the most basic hierarchical structure effortlessly produced in nature is difficult. However, through the utilization of self-assembling structures or "templates", such as polymers or amphiphilic surfactants, combined with some favorable interaction between a chosen inorganic, the potential exists to imprint an inorganic material with a morphology dictated via synthetic molecular …