Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Joining Polycrystalline Cubic Boron Nitride And Tungsten Carbide By Partial Transient Liquid Phase Bonding, Grant O. Cook Iii Dec 2010

Joining Polycrystalline Cubic Boron Nitride And Tungsten Carbide By Partial Transient Liquid Phase Bonding, Grant O. Cook Iii

Theses and Dissertations

Friction stir welding (FSW) of steel is often performed with an insert made of polycrystalline cubic boron nitride (PCBN). Specifically, MS80 is a grade of PCBN made by Smith MegaDiamond that has been optimized for the FSW process. The PCBN insert is attached to a tungsten carbide (WC) shank by a compression fitting. However, FSW tools manufactured by this method inevitably fail by fracture in the PCBN. Permanently bonding PCBN to WC would likely solve the fracturing problem and increase the life of PCBN FSW tools to be economically viable. Partial transient liquid phase (PTLP) bonding, a process used to …


Controlled Delivery Of Serp-1 Protein From Poly(Vinyl Alcohol) Hydrogel, Karen L. Kennedy Aug 2010

Controlled Delivery Of Serp-1 Protein From Poly(Vinyl Alcohol) Hydrogel, Karen L. Kennedy

Electronic Thesis and Dissertation Repository

Poly(vinyl alcohol) (PVA) was selected and evaluated as a controlled drug delivery matrix for Serp-1, a potential new therapeutic with anti-inflammatory properties for control of restenosis. PVA hydrogels, containing a high water content, can be formed by physical crosslinking via a process involving freezing and thawing the material in multiple cycles. PVA, being a well known biomaterial, is suited for biomedical applications and the high water content and hydrophilicity provides a friendly environment for the delivery of large protein based drugs. Using bovine serum albumin (BSA) as a model protein, the controlled release properties of PVA were investigated. Release profiles …


Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong May 2010

Molecular Simulations Of Adsorption And Diffusion In Metal-Organic Frameworks (Mofs), Ruichang Xiong

Doctoral Dissertations

Metal-organic frameworks (MOFs) are a new class of nanoporous materials that have received great interest since they were first synthesized in the late 1990s. Practical applications of MOFs are continuously being discovered as a better understanding of the properties of materials adsorbed within the nanopores of MOFs emerges. One such potential application is as a component of an explosive-sensing system. Another potential application is for hydrogen storage.

This work is focused on tailoring MOFs to adsorb/desorb the explosive, RDX. Classical grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations have been performed to calculate adsorption isotherms and self-diffusivities of …


A Microfluidic Method To Measure Diffusion In Hydrogels, Andrew Lee Litzenberger Jan 2010

A Microfluidic Method To Measure Diffusion In Hydrogels, Andrew Lee Litzenberger

Master’s Theses

A novel microfluidic method is proposed for studying diffusion of small molecules in a hydrogel. Microfluidic devices were prepared with semi-permeable microchannels defined by crosslinked poly(ethylene glycol) (PEG). Uptake of dye molecules from aqueous solutions flowing through the microchannels was observedoptically and diffusion of the dye into the hydrogel was quantified. To complement the diffusion measurements from the microfluidic studies, nuclear magnetic resonance(NMR) characterization of the diffusion of dye in the PEG hydrogels was performed. The diffusion of small molecules in a hydrogel is relevant to applications such asdrug delivery and modeling transport for tissue-engineering applications. The diffusion of small …