Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Polymer-Based Wide-Angle Micro -Optic Lens System With Dynamically Variable Focal Length And Field Of View, Mangilal Agarwal Oct 2004

Polymer-Based Wide-Angle Micro -Optic Lens System With Dynamically Variable Focal Length And Field Of View, Mangilal Agarwal

Doctoral Dissertations

A novel polymer-based integrated wide-angle dynamic micro-optical lens system that can provide variable focal length and field of view (FOV) with large numerical aperture is designed, fabricated, and tested for its optical characteristics.

Initial experiments were conducted using static glass lenses to test for configuration of lenses that could provide wide FOV. From these initial experiments, it was found that the higher FOV could be achieved with double concave (DCV) lenses compared to double convex (DCX) lenses of the same focal length. Further, it was observed that increasing the number of DCV lenses increases FOV. Thus, an integrated dynamic polymer …


Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel Oct 2004

Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel

Doctoral Dissertations

Thin wall microcapsules were formed via Layer-by-Layer Self-Assembly of alternate adsorption of oppositely charged polyelectrolyte on microcores. After the core dissolution, empty polymeric shells with 20–25 nm thick walls were obtained. These microcapsules were loaded with Myoglobin, Hemoglobin and Glucose Oxidase by opening capsule pores at low pH and closing them at higher pH. The native structure of the enzyme was not affected due to different treatments. Biocompatible nanoshells were also prepared for encasing DNA. Using the same Layer-by-Layer Self-Assembly approach nanoparticle were constructed containing DNA as one of the layers. The nanoparticles of different architecture were used to deliver …


Biomimetic Synthesis Within Polyelectrolyte Microcapsules: Characterization Of Enzyme Catalyzed Polyphenols And Polypeptides, Rohit C. Ghan Oct 2004

Biomimetic Synthesis Within Polyelectrolyte Microcapsules: Characterization Of Enzyme Catalyzed Polyphenols And Polypeptides, Rohit C. Ghan

Doctoral Dissertations

An enzyme-catalyzed synthesis of novel polymers within layer-by-layer (LbL) constructed polyelectrolyte microcapsules has been developed. This approach is based on the selective permeability of polyelectrolyte-capsule walls to monomer molecules. Conversely biocatalysts and forming polymeric chains cannot exit the micro-capsule interior because of their characteristic high molecular weight. Horseradish Peroxidase (HRP) was encapsulated into four bilayer PSS (poly-styrenesulfonate)/PAH (poly-allylamine hydrochloride) capsules with an average diameter of 5 μm using pH-driven pore opening. The polymerization of 4-(2-Aminoethyl) phenol hydrochloride (tyramine) catalyzed by HRP produces easily detectable fluorescent polymeric products after the addition of hydrogen peroxide to the system. It is known that …


Layer-By-Layer Nanoassembly Combined With Microfabrication Techniques For Microelectronics And Microelectromechanical Systems, Jingshi Shi Oct 2004

Layer-By-Layer Nanoassembly Combined With Microfabrication Techniques For Microelectronics And Microelectromechanical Systems, Jingshi Shi

Doctoral Dissertations

The objective of this work is to investigate the combination of layer-by-layer self-assembly with microfabrication technology and its applications in microelectronics and MEMS.

One can assemble, on a standard silicon wafer, needed multilayers containing different nanoparticles and polymers and then apply various micromanufacturing techniques to form microdevices with nanostructured elements.

Alternate layer-by-layer self-assembly of linear polyions and colloidal silica at elevated temperatures have been firstly studied by QCM and SEM. LbL self-assembly and photolithography were combined to fabricate an indium resistor. The RTA method was employed in the fabrication. Hot-embossing technique as a reasonably fast and moderately expensive technique was …


Computational Approaches To The Design And Analysis Of Stability Of Polypeptide Multilayer Thin Films, Bin Zheng Oct 2004

Computational Approaches To The Design And Analysis Of Stability Of Polypeptide Multilayer Thin Films, Bin Zheng

Doctoral Dissertations

The focus of this research is the development of computational approaches to understanding the physical basis of layer-by-layer assembly (LBL), a key methodology of nanomanufacturing. The results provided detailed information on structure which cannot be obtained directly by experiments.

The model systems chosen for study are polypeptide chains. Reasons for this are that polypeptides are no less polyelectrolytes than the more usual polyions, and one can control the primary structure of a polypeptide on a residue-by-residue basis using modern synthetic methods. Moreover, as peptides constitute one of the four major classes of biological macromolecules, research in this direction is expected …


A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu Jul 2004

A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu

Doctoral Dissertations

Investigations on instantaneous skin burns are useful for an accurate assessment of burn-evaluation and for establishing thermal protections for various purposes. Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it is essential for developers and users of hyperthermia systems to predict, and interpret correctly the biomass thermal and vascular response to heating. In this dissertation, we employ the well-known Pennes' bioheat transfer equation to predict the degree of skin burn and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes' bioheat transfer equation in a three-dimensional single …


Fabrication, Characterization, And Modeling Of Organic Capacitors, Schottky Diodes, And Field Effect Transistors, Mo Zhu Jul 2004

Fabrication, Characterization, And Modeling Of Organic Capacitors, Schottky Diodes, And Field Effect Transistors, Mo Zhu

Doctoral Dissertations

The objectives of this project are to fabricate, characterize, and model organic microelectronic devices by traditional lithography techniques and Technology Computer Aided Design (TCAD).

Organic microelectronics is becoming a promising field due to its number of advantages in low-cost fabrication for large area substrates. There have been growing studies in organic electronics and optoelectronics. In this project, several organic microelectronic devices are studied with the aid of experimentation and numerical modeling.

Organic metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) capacitors consisting of insulating polymer poly(4-vinylphenol) (PVP) have been fabricated by spin-coating, photo lithography, and reactive ion etching techniques. Based on the fabricated …


Silicon Based Micro Components For Use In Chemical Agent Detection, Scott R. Forrest Apr 2004

Silicon Based Micro Components For Use In Chemical Agent Detection, Scott R. Forrest

Doctoral Dissertations

The objective of this work was to model, fabricate and test silicon based micro components for applications in chemical agent detection. Part I deals with research done on tunable micro Fabry-Perot interferometers. These devices are designed for use in identifying chemicals that absorb radiation in the infrared range of the spectrum. Part II deals with research done on novel Layer by Layer (LbL) assembled enzyme microreactors. These devices are designed for use in identifying chemicals that absorb radiation in the ultraviolet and visible range of the spectrum.

The emphasis of Part I is on the design and modeling of Fabry-Perot …


Fatigue Of Drill Pipes Used In Horizontal Directional Drilling, Feibai Ma Apr 2004

Fatigue Of Drill Pipes Used In Horizontal Directional Drilling, Feibai Ma

Doctoral Dissertations

Fatigue is the most common cause of mini-HDD drill rod failure. It can occur at stress levels far below the normal operating stress in most drill stem components. Fatigue failures occur because the drill rod, after it has been forced into a curved path, undergoes a cyclic bending stress oscillating from tension to compression in concert with the other stress components caused by torque, thrust, or pullback.

When a rod breaks underground, there is considerable extra cost caused by the delay in “fishing” out the broken rod as well as the cost of replacing the rod. On the other hand, …


Fabrication, Characterization, And Chemical Sensing Of Silicon Dioxide Microcantilevers, Yanjun Tang Apr 2004

Fabrication, Characterization, And Chemical Sensing Of Silicon Dioxide Microcantilevers, Yanjun Tang

Doctoral Dissertations

The objective of this work is to design and fabricate an advanced silicon dioxide microcantilever sensor and to investigate chemical and biological sensing by microtechnology.

Microcantilever sensor technology has many advantages including fast response time, lower cost of fabrication, the possibility of sensor arrays with small overall dimensions, the ability to explore microenvironments, and improved portability for field applications. For all of these advantages, microcantilever chemical and biological sensors have drawn more and more attention.

So far, all other microcantilevers were designed and fabricated for AFM applications. We developed a novel SiO2 microcantilever especially for chemical and biological sensor applications. …