Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Impact Resistant Glassy Polymers: Pre-Stress And Mode Ii Fracture, Jared Steven Archer Feb 2013

Impact Resistant Glassy Polymers: Pre-Stress And Mode Ii Fracture, Jared Steven Archer

Open Access Dissertations

Model glassy polymers, polymethyl methacrylate (PMMA) and polycarbonate (PC) are used to experimentally probe several aspects of polymer fracture. In Chapter 1, the method of pre-stress is employed as a means of improving the fracture properites of brittle PMMA. Samples are tested under equi-biaxial compression, simple shear and a combination of biaxial compression and shear. Equi-biaxial compression is shown to increase the threshold stress level for projectile penetration whereas shear pre-stress has a large effect on the overall energy absorbed during an impact. There is also an apparent interaction observed between compression and shear to dramatically increase the threshold stress. …


Helical Ordering In Chiral Block Copolymers, Wei Zhao Feb 2013

Helical Ordering In Chiral Block Copolymers, Wei Zhao

Open Access Dissertations

The phase behavior of chiral block copolymers (BCPs*), namely, BCPs with at least one of the constituent block is formed by chiral monomers, is studied both experimentally and theoretically. Specifically, the formation of a unique morphology with helical sense, the H* phase, where the chiral block forms nanohelices hexagonally embedded in the matrix of achiral block, is investigated. Such unique morphology was first observed in the cast film of polystyrene-b-poly(L-lactide) (PS-b-PLLA) from a neutral solvent dichloromethane at room temperature with all the nanohelices being left-handed, which would switch to right-handed if the PLLA block changes to …


Dynamics And Kinetics Of Model Biological Systems, Stephen William Mirigian Sep 2012

Dynamics And Kinetics Of Model Biological Systems, Stephen William Mirigian

Open Access Dissertations

In this work we study three systems of biological interest: the translocation of a heterogeneously charged polymer through an infinitely thin pore, the wrapped of a rigid particle by a soft vesicle and the modification of the dynamical properties of a gel due to the presence of rigid inclusions.

We study the kinetics of translocation for a heterogeneously charged polyelectrolyte through an infinitely narrow pore using the Fokker-Planck formalism to compute mean first passage times, the probability of successful translocation, and the mean successful translocation time for a diblock copolymer. We find, in contrast to the homopolymer result, that details …


Tuning The Properties Of Metal-Ligand Complexes To Modify The Properties Of Supramolecular Materials, Ian Henderson May 2012

Tuning The Properties Of Metal-Ligand Complexes To Modify The Properties Of Supramolecular Materials, Ian Henderson

Open Access Dissertations

Supramolecular chemistry is the study of discreet molecules assembled into more complex structures though non-covalent interactions such as host-guest effects, pi-pi stacking, electrostatic effects, hydrogen bonding, and metal-ligand interactions. Using these interactions, complex hierarchical assembles can be created from relatively simple precursors.

Of the supramolecular interactions listed above, metal-ligand interactions are of particular interest due to the wide possible properties which they present. Factors such as the denticity, polarizability, steric hindrance, ligand structure, and the metal used (among others) contribute to a dramatic range in the physical properties of the metal-ligand complexes. Particularly affected by these factors are the kinetic …


Surface Instabilities For Adhesion Control, Chelsea Simone Davis May 2012

Surface Instabilities For Adhesion Control, Chelsea Simone Davis

Open Access Dissertations

Controlling the specific adhesive properties of surfaces is a technologically complex challenge that has piqued the interest of many research groups around the world. While many scientists have used complex topographic and chemically altered surfaces to tune adhesion, others have shown that naturally occurring phenomena, such as elastic instabilities, can impact adhesion. We provide a thorough investigation into the effects of periodic surface buckling instabilities, or wrinkles, on adhesion. Wrinkles are an attractive surface patterning alternative as they form spontaneously over large areas and their dimensions, namely wavelength and amplitude, can be controlled on length scales relevant for adhesion control. …


Controlling Morphology In Swelling-Induced Wrinkled Surfaces, Derek Breid Feb 2012

Controlling Morphology In Swelling-Induced Wrinkled Surfaces, Derek Breid

Open Access Dissertations

Wrinkles represent a pathway towards the spontaneous generation of ordered surface microstructure for applications in numerous fields. Examples of highly complex ordered wrinkle structures abound in Nature, but the ability to harness this potential for advanced material applications remains limited. This work focuses on understanding the relationship between the patterns on a wrinkled surface and the experimental conditions under which they form. Because wrinkles form in response to applied stresses, particular attention is given to the nature of the stresses in a wrinkling surface. The fundamental insight gained was then utilized to account for observed wrinkle formation phenomena within more …


Phase Behavior Of Block Copolymers In Compressed Co2 And As Single Domain-Layer, Nanolithographic Etch Resists For Sub-10 Nm Pattern Transfer, Curran Matthew Chandler Sep 2011

Phase Behavior Of Block Copolymers In Compressed Co2 And As Single Domain-Layer, Nanolithographic Etch Resists For Sub-10 Nm Pattern Transfer, Curran Matthew Chandler

Open Access Dissertations

Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts - the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including …


Organic Photovoltaics Based On P3ht/Pcbm: Correlating Efficiency And Morphology, Dian Chen Sep 2011

Organic Photovoltaics Based On P3ht/Pcbm: Correlating Efficiency And Morphology, Dian Chen

Open Access Dissertations

Controlling the morphology of thin films is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. The morphology and interfacial behavior of the multicomponent active layers confined between electrodes are strongly influenced by the preparation conditions. Results obtained in this work quantitatively show the photovoltaic device performance is strongly affected by the nanoscopic morphology, crystal orientation, composition distribution and the interdiffusion behavior of the photoactive layer. To better understand the physics of the photoactive layer in the organic photovoltaic devices, it is necessary to gain a quantitative understanding of the morphology and the manner in which it develops. A …


Fiber Formation From The Melting Of Free-Standing Polystyrene, Ultra-Thin Films: A Technique For The Investication Of Thin Film Dynamics, Confinement Effects And Fiber-Based Sensing, Jeremy M. Rathfon Feb 2011

Fiber Formation From The Melting Of Free-Standing Polystyrene, Ultra-Thin Films: A Technique For The Investication Of Thin Film Dynamics, Confinement Effects And Fiber-Based Sensing, Jeremy M. Rathfon

Open Access Dissertations

Free-standing ultra-thin films and micro to nanoscale fibers offer a unique geometry in which to study the dynamics of thin film stability and polymer chain dynamics. By melting these films and investigating the subsequent processes of hole formation and growth, and fiber thinning and breakup, many interesting phenomena can be explored, including the nucleation of holes, shear-thinning during hole formation, finite-extensibility of capillary thinning viscoelastic fibers, and confinement effects on entanglement of polymer chains. Free-standing films in the melt are unstable and rupture due to instabilities. The mechanism of membrane failure and hole nucleation is modeled using an energy barrier …


Oligopeptide-Functionalized Graft Copolymers: Synthesis And Applications In Nucleic Acid Delivery, Rebecca Boudreaux Breitenkamp Feb 2009

Oligopeptide-Functionalized Graft Copolymers: Synthesis And Applications In Nucleic Acid Delivery, Rebecca Boudreaux Breitenkamp

Open Access Dissertations

Utilizing the diverse functionality of amino acids, a new class of amphiphilic graft copolymers has been synthesized, characterized, and explored for applications in biomaterials and nucleic acid delivery. This thesis research focused on the syntheses of oligopeptide-functionalized polyesters and polyolefins. Polyester functionalization was geared towards applications in biomaterials, tissue engineering, and drug delivery by incorporating sequences that promote cell-adhesion. These polyester- graft -oligopeptide materials were prepared by a 1,3-Huisgen cycloaddition reaction, "click" chemistry, of an azide-terminated oligopeptide (prepared by Fmoc-based solid phase peptide synthesis (SPPS)) and alkyne-containing polyester (synthesized by ring-opening polymerization). Following the syntheses of these materials, they were …


Polymer Confinement And Translocation, Chiu Tai Andrew Wong Feb 2009

Polymer Confinement And Translocation, Chiu Tai Andrew Wong

Open Access Dissertations

Single polymer passage through geometrically confined regions is ubiquitous in biology. Recent technological advances have made the direct study of its dynamics possible. We studied the capture of DNA molecules by the electroosmotic flow of a nanopore induced by its surface charge under an applied electric field. We showed theoretically that the DNA molecules underwent coil-stretch transitions at a critical radius around the nanopore and the transition assisted the polymer passage through the pore. To understand how a polymer worms through a narrow channel, we investigated the translocation dynamics of a Gaussian chain between two compartments connected with a cylindrical …


Synthesis And Interfacial Behavior Of Functional Amphiphilic Graft Copolymers Prepared By Ring-Opening Metathesis Polymerization, Kurt E. Breitenkamp Feb 2009

Synthesis And Interfacial Behavior Of Functional Amphiphilic Graft Copolymers Prepared By Ring-Opening Metathesis Polymerization, Kurt E. Breitenkamp

Open Access Dissertations

This thesis describes the synthesis and application of a new series of amphiphilic graft copolymers with a hydrophobic polyolefin backbone and pendent hydrophilic poly(ethylene glycol) (PEG) grafts. These copolymers are synthesized by ruthenium benzylidene-catalyzed ring-opening metathesis polymerization (ROMP) of PEG-functionalized cyclic olefin macromonomers to afford polycyclooctene- graft -PEG (PCOE- g -PEG) copolymers with a number of tunable features, such as PEG graft density and length, crystallinity, and amphiphilicity. Macromonomers of this type were prepared first by coupling chemistry using commercially available PEG monomethyl ether derivatives and a carboxylic acid-functionalized cycloctene. In a second approach, macromonomers possessing a variety of PEG …


Effect Of Loading And Process Conditions On The Mechanical Behavior In Sebs Thermoplastic Elastomers (Tpes), Mohit Mamodia Feb 2009

Effect Of Loading And Process Conditions On The Mechanical Behavior In Sebs Thermoplastic Elastomers (Tpes), Mohit Mamodia

Open Access Dissertations

Styrenic block copolymer thermoplastic elastomers are one of the most widely used thermoplastic elastomers (TPEs) today. The focus of this research is to fundamentally understand the structure-processs-property relationships in these materials. Deformation behavior of the block copolymers with cylindrical and lamellar morphologies has been investigated in detail using unique techniques like deformation calorimetry, transmission electron microscopy (TEM), combined in-situ small angle x-ray and wide angle x-ray scattering (SAXS/WAXS). The research involves the study of structural changes that occur at different length scales along with the energetics involved upon deformation. The structural changes in the morphology of these systems on deformation …