Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun Dec 2019

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) bioscaffolds are a promising platform for the delivery of pro-regenerative cell populations with the goal of promoting adipose tissue regeneration. The current study investigated the effects of seeding DAT bioscaffolds with syngeneic bone marrow-derived macrophages and/or adipose-derived stromal cells (ASCs) on in vivo soft tissue regeneration. Methods were established to derive the macrophages from MacGreen mice, which were dynamically seeded onto the DAT scaffolds alone or in combination with ASCs. Seeded and unseeded scaffolds were implanted subcutaneously into C57Bl/6 mice. At 2 and 4 weeks, cell infiltration, angiogenesis, and adipogenesis were analyzed through histology ...


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing ...


Preparation And Characterization Of Electrospun Rgo-Poly(Ester Amide) Tissue Engineering Scaffolds, Hilary Stone Jun 2018

Preparation And Characterization Of Electrospun Rgo-Poly(Ester Amide) Tissue Engineering Scaffolds, Hilary Stone

Electronic Thesis and Dissertation Repository

Tissue engineering scaffolds should support tissue maturation through exposure to biologically relevant stimuli and through successful cell infiltration. External electrical stimulation is particularly relevant for cardiac and neural applications, and requires conductive scaffolds to propagate electrical signals; cell infiltration is only possible with scaffolds that have sufficient porosity. The aim of this study was to impart conductivity and increased porosity of electrospun poly(ester amide) (PEA) scaffolds. Reduced graphene oxide (rGO) was incorporated into blend PEA and coaxial PEA-chitosan fibrous scaffolds, which increased scaffold conductivity and supported cardiac differentiation. The novel combination of ultrasonication and leaching of a sacrificial polymer ...


Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb Dec 2017

Syngenic Adipose-Derived Stem/Stromal Cells Delivered In Decellularized Adipose Tissue Scaffolds Enhance In Vivo Tissue Regeneration Through Host Cell Recruitment, Kevin P. Robb

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) represents a promising adipogenic bioscaffold for applications in soft tissue augmentation or reconstruction. With the goal of investigating the role of syngeneic donor adipose-derived stem/stromal cells (ASCs) and host myeloid cells during in vivo adipose tissue regeneration, transgenic reporter mouse strains were used to track these cell populations within ASC-seeded and unseeded DAT scaffolds. Donor ASCs were obtained from dsRed transgenic mice. These cells were shown to express characteristic cell surface markers, and multilineage differentiation capacity was confirmed. To facilitate cell tracking, DAT scaffolds were subcutaneously implanted into MacGreen mice in which myeloid cells express ...


Tissue Engineering Scaffolds With Enhanced Oxygen Delivery Using A Cyclodextrin Inclusion Complex, Tierney Gb Deluzio Aug 2014

Tissue Engineering Scaffolds With Enhanced Oxygen Delivery Using A Cyclodextrin Inclusion Complex, Tierney Gb Deluzio

Electronic Thesis and Dissertation Repository

The development of a strategy to improve oxygen delivery to cells seeded on scaffolds is essential for the success of tissue engineering applications. The focus of this work was to explore the application of cyclodextrin inclusion complexes (CD:ICs) with perfluorocarbons as oxygen carriers. CD:ICs were prepared from alpha-cyclodextrin and perfluoroperhydrophenanthrene via co-precipitation, paste mixing, and dry mixing complexation techniques. Characterization indicated that paste mixing at a 2:1 host:guest ratio was the most effective method for complexation between the parent molecules. The CD:ICs were then successfully incorporated in 3D fibrous mats via electrospinning with poly(carbonate ...


Functional Co-Substituted Poly[(Amino Acid Ester)Phosphazene] Biomaterials, Amanda L. Baillargeon Jul 2014

Functional Co-Substituted Poly[(Amino Acid Ester)Phosphazene] Biomaterials, Amanda L. Baillargeon

Electronic Thesis and Dissertation Repository

The development of new and improved biomaterials is essential for tissue engineering and regenerative medicine applications. Amino acid-based polyphosphazenes are being explored as scaffold materials for tissue engineering applications due to their non-toxic degradation products and tunable material properties. This work focuses on the synthesis of non-functional and novel functional poly[(amino acid ester)phosphazene]s using a facile method of thermal ring opening polymerization followed by one-pot room temperature substitution. The family of polyphosphazenes developed in this work is based on L-alanine (PNEAs), L-phenylalanine (PNEFs), and L-methionine (PNEMs) with L-glutamic acid imparting the functionality. Characterization of these materials demonstrated ...


Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li Aug 2013

Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li

Electronic Thesis and Dissertation Repository

In tissue engineering, the scaffold plays a critical role in guiding and supporting cells to function and grow optimally. The electrospun nanofibrous scaffold can serve as a near ideal substrate for tissue engineering because it has high surface area and the three-dimensional interconnected porous network can enhance cell attachment and proliferation. Core-shell nanofibrous scaffolds produced with coaxial electrospinning allow bioactive molecule encapsulation to improve cell adhesion, mediate and promote the proper signaling among the cells for their functioning and growth. In the current study, core-shell collagen nanofibers were fabricated via coaxial electrospinning with horizontal and vertical configurations. Core-shell nanofibers with ...


Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo Apr 2013

Sol-Gel Derived Biodegradable And Bioactive Organic-Inorganic Hybrid Biomaterials For Bone Tissue Engineering, Bedilu A. Allo

Electronic Thesis and Dissertation Repository

Treatments of bone injuries and defects have been largely centered on replacing the lost bone with tissues of allogeneic or xenogeneic sources as well as synthetic bone substitutes, which in all lead to limited degree of structural and functional recovery. As a result, tissue engineering has emerged as a viable technology to regenerate the structures and therefore recover the functions of bone tissue rather than replacement alone. Hence, the current strategies of bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix (ECM) as templates onto which cells attach, multiply, migrate and function.

In this ...


Co-Culture Of Smooth Muscle Cells And Endothelial Cells On Porous 3d Polyurethane Scaffolds For Vascular Tissue Engineering, Aparna Bhattacharyya Apr 2012

Co-Culture Of Smooth Muscle Cells And Endothelial Cells On Porous 3d Polyurethane Scaffolds For Vascular Tissue Engineering, Aparna Bhattacharyya

Electronic Thesis and Dissertation Repository

One of the challenges in the designing of clinically-relevant vascular substitutes is our lack of understanding on how vascular smooth muscle cells (VSMCs) and vascular endothelial cells (VECs) interact in the graft. The aim of this study was to examine the factors that play a role in VSMC and VEC interaction in 3D co-culture. Highly porous 3D poly(carbonate urethane) scaffolds were fabricated using a solvent casting and particulate leaching method. VSMCs and VECs were co-cultured for 48 hours. Immunofluorescence staining showed that VSMCs readily attached to the scaffold and formed dense confluent layers which facilitated the organization of VECs ...


Oxygen Delivery Strategies In Tissue-Engineering Constructs, Dawit Gezahegn Seifu Apr 2012

Oxygen Delivery Strategies In Tissue-Engineering Constructs, Dawit Gezahegn Seifu

Electronic Thesis and Dissertation Repository

The supply of nutrients and the removal of waste products play a major role in tissue engineering. From all the nutrients necessary for cells seeded on scaffolds for tissue regeneration, oxygen is the limiting component due to its low solubility in culture media while cells consume five to six moles of oxygen for every mole of monosaccharide. The aim of the present work was to develop different strategies to improve the supply of oxygen to human coronary artery smooth muscle cells (HCASMC) seeded on three dimensional (3D) porous biostable polyurethane scaffolds. As a springboard for the study, the measured value ...