Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Optimization Of Window Confirguration In Buildings For Sustainable Thermal And Lighting Performance, Meseret Tesfay Kahsay May 2019

Optimization Of Window Confirguration In Buildings For Sustainable Thermal And Lighting Performance, Meseret Tesfay Kahsay

Electronic Thesis and Dissertation Repository

In recent years, there is an urban architectural evolution towards significant use of glazing in high-rise buildings. Windows play a critical role in moderating the elements of the climate. Although good for outdoor viewing and daylighting, glazing has very little ability to control heat flow and solar heat gain. As a result, about 20 - 40% of the energy in a building is wasted through windows. Finding an optimal configuration of windows is a complex task due to its conflicting objectives, such as outdoor view, daylighting, and thermal comfort demands. Further buildings interact with the microclimate in a complex manner, the ...


Numerical Investigations Of Bubble Column Equipped With Vertical Internals In Different Arrangements, Tuntun Gaurav Aug 2018

Numerical Investigations Of Bubble Column Equipped With Vertical Internals In Different Arrangements, Tuntun Gaurav

Electronic Thesis and Dissertation Repository

Bubble columns are multiphase contactors with wide applications in industrial processes. Often they are equipped with longitudinal tube bundles to facilitate heat exchange. Studying effects of these internals on column hydrodynamics is vital for the design of these internals. Computational Fluid Dynamic (CFD) simulations provide an understanding of the complex two-phase flow enabling the study of the effects of the internals on the column hydrodynamics. In the present work, an Eulerian-Eulerian based two-fluid model (TFM) coupled with a population balance model (PBM) is used to simulate the gas-liquid two-phase flows in bubble columns. The models studied were validated using experimental ...


A Cfd Assisted Closed-Loop Control System Design For The 37-Element Canadian Scwr Under Full Load Condition, Huirui Han Feb 2018

A Cfd Assisted Closed-Loop Control System Design For The 37-Element Canadian Scwr Under Full Load Condition, Huirui Han

Electronic Thesis and Dissertation Repository

A method to design the closed-loop control system for the 37-element vertical Canadian supercritical water-cooled reactor (SCWR) fuel bundle has been proposed in this study. The dynamic models used in the controller design are obtained based on the computational fluid dynamics (CFD) simulations of the fluid flow and heat transfer of the supercritical water in the SCWR fuel bundle. The Reynolds Stress Model is used in the CFD simulations. Comparisons of the supercritical water flow behaviors and heat transfer phenomenon in the single- rod channel and multi-rod channel are also carried out. The results show that there are secondary flows ...


Assessment Of Dynamic Effect Of Transmission Line Conductor Longitudinal Reaction Due To Downburst Loading, Ibrahim Ibrahim Dec 2017

Assessment Of Dynamic Effect Of Transmission Line Conductor Longitudinal Reaction Due To Downburst Loading, Ibrahim Ibrahim

Electronic Thesis and Dissertation Repository

Due to the locality and non-stationary nature of downburst wind loading events, their effect on the structural response of transmission line structures is of special nature that differs from conventional atmospheric boundary layer wind loading. Acknowledging such difference, the current thesis aims to quantify the dynamic effect associated with downburst loading on transmission line systems. To achieve that, several steps had to be realized, including experimentally verifying the numerical model used for analysis using wind field that was generated using computational fluid dynamics. The verified model was extended from model scale to full scale, where the wind field used for ...


The Development And Numerical Modelling Of A Representative Elemental Volume For Packed Sand, Ashraf Thabet Sep 2017

The Development And Numerical Modelling Of A Representative Elemental Volume For Packed Sand, Ashraf Thabet

Electronic Thesis and Dissertation Repository

The motivation of this thesis is the development of simple microscopic-scale model (representative elemental volume; REV) that can be used to conduct flow and heat transfer simulations from which closure coefficients can be established for the volume-averaged transport equations for porous media (packed bed). The thesis provides a brief introduction to the computational technique adopted for the geometric generation of the REV (YADE), followed by a parametric study undertaken to reveal the minimum number of particles inside the REV that are required to mimic the appropriate physics. Additional analysis was conducted with the goal of determining the influence of deviation ...


Numerical Simulation Of Air Flow In Aeroengine Compressors, Shady Mohamed Mohamed Ali Jan 2017

Numerical Simulation Of Air Flow In Aeroengine Compressors, Shady Mohamed Mohamed Ali

Electronic Thesis and Dissertation Repository

The performance of an aeroengine is influenced by the performance of the compressor system. A typical compressor consists of multistage axial compressors followed by a centrifugal stage. Here, a high-speed centrifugal and an axial stage are investigated in terms of turbulence modelling, flow blockage and rotor-stator (R-S) gap using the commercial software ANSYS CFX. The curvature corrected Shear stress transport (SST-CC) model of Smirnov and Menter is investigated for the first time in a high-speed centrifugal stage in terms of curvature and rotation effects. The SST-CC predictions are compared with the standard SST, Speziale, Sarkar, and Gatski Reynolds stress model ...


Multiscale Wind Modelling For Sustainability And Resilience, Djordje Romanic Oct 2016

Multiscale Wind Modelling For Sustainability And Resilience, Djordje Romanic

Electronic Thesis and Dissertation Repository

The research presented herein is a mix of meteorological and wind engineering disciplines. In many cases, there is a gap between these two fields and this thesis is an attempt to bridge that gap through multiscale wind modelling approaches. Data and methods used in this study cover a multitude of spatial and temporal scales. Applications are in the fields of sustainability and resilience. This relationship between multiscale wind modelling and sustainability and resilience is investigated examining several case studies of three different developments: urban, rural and coastal.

An urban wind modelling methodology is proposed and applied for a specific development ...


A Cfd Assisted Control System Design For Supercritical Water Cooled Reactor, Rohit V. Maitri Jul 2014

A Cfd Assisted Control System Design For Supercritical Water Cooled Reactor, Rohit V. Maitri

Electronic Thesis and Dissertation Repository

In this study, the methodology to construct a control system based on computational fluid dynamics (CFD) simulations is developed for supercritical water cooled reactor (SCWR). The CFD model using Reynolds Stress Model (RSM) and k-w SST model is validated with the experimental cases of steady state and vertically up flowing supercritical water in circular tubes for normal heat transfer and deteriorated heat transfer (DHT) cases. This model is extended to simulate the transient thermal-hydraulic behaviour of supercritical fluid flow and heat transfer, and the results are also compared with the 1-D numerical model, THRUST. The DHT phenomenon is investigated using ...


Numerical Modelling Of Downburst Interaction With Bluff Body, Aditi Jog Dec 2013

Numerical Modelling Of Downburst Interaction With Bluff Body, Aditi Jog

Electronic Thesis and Dissertation Repository

The objective of this study is to investigate the interaction of a bluff body with a downburst flow. Numerical investigation of the flow field using CFD analysis was carried out for three different downburst sizes (h/d=1, 2, 4) under suitable boundary conditions subjected to constant jet velocity. The downburst-structure interaction study was conducted for two jet diameters (h/d=1 and 4) and two radial locations from the downburst center.

The results showed that the downburst size greatly dominates the intensity of the flow. The largest downburst resulted in the highest velocity magnitude near the ground and also ...


Numerical Modelling Of Species Exchange In A 3d Porous Medium: Modelling Exchange Within The Human Lung, Chelsea E. Johnson Apr 2013

Numerical Modelling Of Species Exchange In A 3d Porous Medium: Modelling Exchange Within The Human Lung, Chelsea E. Johnson

Electronic Thesis and Dissertation Repository

The volume-averaged oxygen transport equation is closed using a volume-averaged form of Fick’s law of diffusion between the air and tissue to simulate species exchange within the lungs’ alveoli using a computational fluid dynamics (CFD) 3D conjugate domain model. Pore level simulations of a terminal alveolated duct are used to determine that the transport of inhaled oxygen from the cluster inlet to the alveolar walls is diffusion dominated. The resistance to oxygen diffusion into the tissue is found to be a function of the tidal volume and tissue transport properties, with a maximum respiration frequency at which the full ...


Parametric Study On A Novel Waste Heat Recovery System, Ghaleb Rustom Abdul Sater Dec 2012

Parametric Study On A Novel Waste Heat Recovery System, Ghaleb Rustom Abdul Sater

Electronic Thesis and Dissertation Repository

The present thesis is based on an industry-sponsor project involving a novel waste heat-to-electricity conversion system. This proprietary system utilizes thermal energy from a low temperature heat sources to produce torque that drives an electric generator to produce electricity. The system needs to be studied through scientific research to help with optimizing the product development, component design, and overall system performance. The main objectives of this study are to develop simulation tools (numerical model) that will allow to simulate the thermo-fluid processes in various system components and to use this numerical model to study the heat transfer and phase-change processes ...


Particle Attrition With Supersonic Nozzles In A High Temperature Fluidized Bed, Feng Li Apr 2011

Particle Attrition With Supersonic Nozzles In A High Temperature Fluidized Bed, Feng Li

Electronic Thesis and Dissertation Repository

Fluidized beds are widely used for a variety of processes such as food, pharmaceutical, petrochemical and energy production. As a typical application of fluidized beds, the fluid coking process uses thermal cracking reactions to upgrade heavy oils and bitumen from oil sands. In order to maintain a well fluidized bed and a satisfactory operation, a series of supersonic nozzles are used to inject high pressure steam in the bed to maintain the coke particle within an optimal range. Currently, the attrition nozzles consume a large florwrate of high pressure and superheated steam, which accounts for about 40 % of the total ...