Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 49

Full-Text Articles in Engineering

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun Dec 2019

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) bioscaffolds are a promising platform for the delivery of pro-regenerative cell populations with the goal of promoting adipose tissue regeneration. The current study investigated the effects of seeding DAT bioscaffolds with syngeneic bone marrow-derived macrophages and/or adipose-derived stromal cells (ASCs) on in vivo soft tissue regeneration. Methods were established to derive the macrophages from MacGreen mice, which were dynamically seeded onto the DAT scaffolds alone or in combination with ASCs. Seeded and unseeded scaffolds were implanted subcutaneously into C57Bl/6 mice. At 2 and 4 weeks, cell infiltration, angiogenesis, and adipogenesis were analyzed through histology ...


Bioluminescence Resonance Energy Transfer (Bret) - Based Nanostructured Biosensor For Detection Of Glucose, Eugene Hwang Nov 2019

Bioluminescence Resonance Energy Transfer (Bret) - Based Nanostructured Biosensor For Detection Of Glucose, Eugene Hwang

Electronic Thesis and Dissertation Repository

Bioluminescence resonance energy transfer (BRET) is a distance dependent, non-radiative energy transfer, which uses a bioluminescent protein to excite an acceptor through resonance energy transfer. In this thesis, BRET technology is incorporated into a sensor comprised of a recombinant protein and quantum dots. The recombinant protein, which includes the bioluminescent protein, Renilla luciferase (Rluc), is used as the donor molecule and cadmium tellurium quantum dots as the acceptor molecules. Separating the donor-acceptor pair is a recombinant protein, glucose binding protein, which changes conformation upon binding glucose and brings the pair closer together, thus allowing BRET to occur. Optimization of the ...


Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma Sep 2019

Design Of Cell-Instructive Biomaterial Scaffolds For Intervertebral Disc Regeneration, Nadia Sharma

Electronic Thesis and Dissertation Repository

Biomaterials-based therapies targeting the nucleus pulposus (NP) have the potential to promote regeneration and restore mechanical function to the intervertebral disc. This study developed composite hydrogels incorporating decellularized NP (DNP) and assessed its effects on viability, retention and differentiation of U-CH1 cells, an NP progenitor-like cell line. A minimal protocol was developed to decellularize bovine NP that reduced nuclear content while preserving key extracellular matrix components predicted to be favourable for bioactivity. The resulting DNP demonstrated cell-instructive effects, supporting U-CH1 viability and retention within the hydrogels, and promoted the differentiation of the progenitor-like cells towards an NP-like phenotype. These studies ...


Scaffold Design Considerations For Soft Tissue Regeneration, Madeleine M. Di Gregorio Aug 2019

Scaffold Design Considerations For Soft Tissue Regeneration, Madeleine M. Di Gregorio

Electronic Thesis and Dissertation Repository

Tissue engineering has emerged as a promising strategy for the replacement of degenerating or damaged tissues in vivo. Also known as regenerative medicine, integral to this therapeutic strategy is biomimetic scaffolds and the biomaterial structural components used to form them. In this study, three different biomaterial scaffolds for tissue engineering applications were fabricated: three-dimensional reverse embedded collagen scaffolds, polymer fusion printed polycaprolactone (PCL) scaffolds, and electrospun gelatin scaffolds. Three-dimensional collagen and PCL scaffolds promoted human adipose-derived stem/stromal cell (ASC) spreading, proliferation, and fibronectin deposition in vitro. Secondly, this study investigated the efficacy of exogenous galectin-3 delivery as a therapeutic ...


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu May 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu

Electronic Thesis and Dissertation Repository

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins such as histatins have demonstrated biological functions directly related to tooth homeostasis and prevention of dental caries. However, histatins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to target major oral diseases that occur under acidic conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers were investigated and the optimized CNs successfully loaded histatin 3 and released it selectively under acidic conditions. Through loading the survival time of ...


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing ...


Tissue Equivalent Gellan Gum Gel Materials For Clinical Mri And Radiation Dosimetry, Pawel Brzozowski Apr 2019

Tissue Equivalent Gellan Gum Gel Materials For Clinical Mri And Radiation Dosimetry, Pawel Brzozowski

Electronic Thesis and Dissertation Repository

Hydrogels contain high amount of water allowing their use as surrogates to human tissues with specific properties that can be tuned by additives. Gellan gum is a gel-forming material of interest and is a replacement for other common gelling agent with limited use as a tissue phantom. Therefore, this thesis examines the application of gellan gum gels as a novel magnetic resonance imaging (MRI) phantom with a design of experiments model to obtain tunable properties. The analysis was extended to include mechanical and electrical properties with a separate design of experiment. Gels doped with synthesized superparamagnetic iron oxide nanoparticles (SPIONs ...


Design Of Tissue-Specific Cellular Microenvironments For Adipose-Derived Stromal Cell Culture And Delivery, Arthi Shridhar Apr 2019

Design Of Tissue-Specific Cellular Microenvironments For Adipose-Derived Stromal Cell Culture And Delivery, Arthi Shridhar

Electronic Thesis and Dissertation Repository

The development of in vitro cell culture models that investigate tissue-specific effects of the extracellular matrix (ECM) on stem/progenitor cell lineage-commitment can contribute towards the design of improved cell delivery strategies. This thesis developed processing methods that conserved ECM bioactivity to generate well-characterized 2- and 3-D culture platforms that facilitated the evaluation of ECM composition on the adipogenic and osteogenic differentiation of human adipose-derived stromal cells (ASCs). Initial work compared α-amylase and pepsin digestion as methods to fabricate ECM coatings. The effects of enzyme processing and ECM composition were explored using human decellularized adipose tissue (DAT) and bovine tendon ...


Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince Feb 2019

Development Of In Situ Forming Hydrogels For Intra-Articular Drug Delivery, Andy Prince

Electronic Thesis and Dissertation Repository

Hydrogels are 3-dimensional crosslinked polymer networks that can absorb significant amounts of water. The physical properties associated with hydrogels affords them resemblance to biological tissues making them good candidates for biomedical applications. Many pharmaceuticals, specifically non-steroidal anti-inflammatory drugs (NSAIDs), have poor aqueous solubility, which limits their bioavailability and efficacy. People suffering from chronic osteoarthritis (OA) are required to frequently take large doses to mitigate pain, which can lead to serious side effects. Hydrogels are good strategies to deliver NSAIDs via articular injection because they can form solid gels in situ. This thesis describes the synthesis, formulation, mechanical testing, in vitro ...


Development Of Granulation Tissue Mimetic Scaffolds For Skin Healing, Adam Hopfgartner Oct 2018

Development Of Granulation Tissue Mimetic Scaffolds For Skin Healing, Adam Hopfgartner

Electronic Thesis and Dissertation Repository

Impaired skin healing is a significant and growing clinical concern, particularly in relation to diabetes, venous insufficiency and immobility. Previously, we developed electrospun scaffolds for the delivery of periostin (POSTN) and connective tissue growth factor 2 (CCN2), matricellular proteins involved in the proliferative phase of healing. This study aimed to design and validate a novel electrosprayed coaxial microsphere for the encapsulation of fibroblast growth factor 9 (FGF9), as a component of the POSTN/CCN2 scaffold, to promote angiogenic stability during wound healing. For the first time, we observed a pro-proliferative effect of FGF9 on human dermal fibroblasts (HDF) in vitro ...


Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li Sep 2018

Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li

Electronic Thesis and Dissertation Repository

Tissue engineering aims to regenerate damaged and deceased tissue by combining cells with scaffold made from an appropriate biomaterial and providing a conducive environment to guide cell growth and the formation or regeneration of new tissue or organ. While collagen, an important material of the extracellular matrix (ECM), is a natural choice as a scaffold biomaterial, the conducive environment can only be created by having the ability to control the geometry, organization, structural and mechanical properties of the scaffold. Moreover, degradability and degradation rate control of the scaffold has to be taken into consideration too. In this work, we aim ...


Engineering Graphene Oxide-Based Nanostructures For Dna Sensors, Aditya Balaji Jul 2018

Engineering Graphene Oxide-Based Nanostructures For Dna Sensors, Aditya Balaji

Electronic Thesis and Dissertation Repository

Various nanostructures have been explored in DNA biosensors to convert the hybridization of DNA sequences to easily measurable processes, including optical, mechanical, magnetic, or electrochemical process. In this thesis, graphene oxide, a two-dimensional nanostructure, is applied in quenching the fluorescence of a core-shell nanoparticles modified with targeted DNA sequences. The core-shell nanoparticles, iron oxide (Fe3O4) core, and fluorescent silica (SiO2) shell, were produced through a wet chemical process which can directly link to a targeted DNA sequence (DNA-t), and the graphene oxide nanosheets were produced by the oxidation of graphite. In the meantime, a complementary- DNA ...


Preparation And Characterization Of Electrospun Rgo-Poly(Ester Amide) Tissue Engineering Scaffolds, Hilary Stone Jun 2018

Preparation And Characterization Of Electrospun Rgo-Poly(Ester Amide) Tissue Engineering Scaffolds, Hilary Stone

Electronic Thesis and Dissertation Repository

Tissue engineering scaffolds should support tissue maturation through exposure to biologically relevant stimuli and through successful cell infiltration. External electrical stimulation is particularly relevant for cardiac and neural applications, and requires conductive scaffolds to propagate electrical signals; cell infiltration is only possible with scaffolds that have sufficient porosity. The aim of this study was to impart conductivity and increased porosity of electrospun poly(ester amide) (PEA) scaffolds. Reduced graphene oxide (rGO) was incorporated into blend PEA and coaxial PEA-chitosan fibrous scaffolds, which increased scaffold conductivity and supported cardiac differentiation. The novel combination of ultrasonication and leaching of a sacrificial polymer ...


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal Feb 2018

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale ...


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of ...


Design And Validation Of Delivery Systems For Galectin-3 For Skin Healing Applications, Karrington A. Mcleod May 2017

Design And Validation Of Delivery Systems For Galectin-3 For Skin Healing Applications, Karrington A. Mcleod

Electronic Thesis and Dissertation Repository

Chronic wounds present a significant burden to patients, causing pain, impairing limb function, and often resulting in the need for amputation. Treatment of chronic dermal wounds is challenging, with current therapies showing limited efficacy in clinical trials. As galectin-3 has been implicated in several wound healing processes, its efficacy as a therapeutic in skin healing was investigated in this study. An electrospun gelatin scaffold loaded with galectin-3 was developed as a delivery system. The influence of human recombinant galectin-3 in skin healing, when delivered topically and using an electrospun scaffold, was then investigated in wild type and diabetic mice. Electrospun ...


Assessment Of The Non-Linear Stress-Strain Characteristics Of Poly (Vinyl Alcohol) Cryogel, Mojdeh Zakeri Mar 2017

Assessment Of The Non-Linear Stress-Strain Characteristics Of Poly (Vinyl Alcohol) Cryogel, Mojdeh Zakeri

Electronic Thesis and Dissertation Repository

Creation of tissue-mimicking constructs is of great importance in the field of biomedical engineering. Poly (vinyl Alcohol) (PVA) is a biomaterial capable of simulating a wide range of geometries and mechanical properties of biological tissues. It is nontoxic, biocompatible, and easy to produce. PVA can be physically crosslinked by repeated cycles of freezing and thawing. The final product of this process is called PVA cryogel (PVA-C). The mechanical properties of PVA-C can be accurately controlled by changing PVA molecular weight, PVA concentration, and number and duration of freeze/thaw cycles (FTC). In this study, the stress-strain behavior of PVA cryogel ...


Investigation Of Chitosan-Based Hydrogels As A Cell Delivery Platform For Adipose-Derived Stem/Stromal Cell Transplantation To Promote Angiogenesis In Ischemic Tissues, Jobanpreet Singh Dhillon Mar 2017

Investigation Of Chitosan-Based Hydrogels As A Cell Delivery Platform For Adipose-Derived Stem/Stromal Cell Transplantation To Promote Angiogenesis In Ischemic Tissues, Jobanpreet Singh Dhillon

Electronic Thesis and Dissertation Repository

Stem cell transplantation is under investigation to stimulate angiogenesis in patients with peripheral artery disease. To develop a cell-delivery platform that enhances cell retention and function post-transplantation, the response of human adipose-derived stem/stromal cells (ASCs) encapsulated within N-methacrylate glycol chitosan (MGC) hydrogels with or without integrin-binding RGD or IKVAV motifs was explored. ASC viability was enhanced in the MGC and MGC-RGD hydrogels relative to the MGC-IKVAV group under hypoxic (2% O­2) culture conditions, with cell spreading and higher metabolic activity noted in MGC-RGD at 14 days. Analysis of angiogenic gene expression revealed similar patterns between all hydrogel ...


Effect Of L-Ascorbic Acid And All-Trans Retinoic Acid On Smooth Muscle Cells Cultured On Pcl Scaffolds, Brandon Chaffay Jan 2017

Effect Of L-Ascorbic Acid And All-Trans Retinoic Acid On Smooth Muscle Cells Cultured On Pcl Scaffolds, Brandon Chaffay

Electronic Thesis and Dissertation Repository

The aim of vascular tissue engineering (VTE) is to fabricate tissues that are both mechanically and biologically competent similar to the native vessel they are intended to replace. To this end, the incorporation of sufficient extracellular matrix elastin and collagen is important. The objective of this thesis work was to evaluate the effect of two biochemical factors, l-ascorbic acid (AA) and all-trans retinoic acid (atRA), on elastin synthesis when coronary artery smooth muscle cells were cultured on 3D polycaprolactone (PCL) scaffolds. First, porous PCL scaffolds were fabricated using a solvent casting and particulate leaching approach. The effect of different ...


The Efficacy Of Bionate As An Articulating Surface For Joint Hemiarthroplasty, Sarah Dedecker Dec 2016

The Efficacy Of Bionate As An Articulating Surface For Joint Hemiarthroplasty, Sarah Dedecker

Electronic Thesis and Dissertation Repository

Hemiarthroplasty procedures replace the diseased side of the joint with an implant to maximize bone preservation while maintaining more native anatomy than a total joint replacement. Even though hemiarthroplasty procedures have been clinically successful, they cause progressive cartilage damage over time due to the use of relatively stiff metallic implant materials. This work investigates the role of low moduli implant material on implant-cartilage contact mechanics and early in vitro cartilage wear. A finite element simulation was developed to assess the effect of low moduli implants in the range of 0.015-0.288 GPa on contact mechanics. Higher contact area and ...


Controlled Delivery Of Angiogenic And Arteriogenic Growth Factors From Biodegradable Poly(Ester Amide) Electrospun Fibers For Therapeutic Angiogenesis, Somiraa S. Said Aug 2016

Controlled Delivery Of Angiogenic And Arteriogenic Growth Factors From Biodegradable Poly(Ester Amide) Electrospun Fibers For Therapeutic Angiogenesis, Somiraa S. Said

Electronic Thesis and Dissertation Repository

Therapeutic angiogenesis relies on the delivery of exogenous growth factors to stimulate neovessel formation. However, systemic administration of angiogenic factors results in rapid clearance from the site of interest due to their short biological half-life. In this work, we are reporting controlled delivery of a ‘cocktail’ of growth factors, an angiogenic factor −fibroblast growth factor-2 (FGF2), and an arteriogenic factor −fibroblast growth factor-9 (FGF9), from biodegradable poly(ester amide) (PEA) electrospun fibers towards targeting neovascular formation and maturation. FGF2 and FGF9 were dual loaded into PEA fibers using a mixed blend and emulsion electrospinning technique. Matrigel tube formation and Boyden ...


The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya Dec 2015

The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya

Electronic Thesis and Dissertation Repository

Bone development and repair involve complex processes that include interaction between cells and their surrounding matrix. In the body, bone sialoprotein (BSP) expression is up-regulated at the onset of mineralization. BSP is a multifunctional acidic phosphoprotein with collagen-binding, hydroxyapatite nucleating, and integrin recognition (RGD sequence, which is important for cell-attachment and signaling) regions. Mice lacking BSP expression (Bsp-/-), exhibit a bone phenotype with reductions in bone mineral density, bone length, osteoclast activation, and impaired bone healing. This thesis examined the role of BSP in tooth development and also its potential use as a therapeutic reagent for bone repair. MicroCT and ...


Effect Of Hemiarthroplasty Implant Contact Geometry And Material On Early Cartilage Wear, Alana Khayat Sep 2015

Effect Of Hemiarthroplasty Implant Contact Geometry And Material On Early Cartilage Wear, Alana Khayat

Electronic Thesis and Dissertation Repository

Hemiarthroplasty is a minimally invasive, cost-effective alternative to total arthroplasty in joints of the upper limb. Though these procedures reduce patient morbidity while restoring joint kinematics, their longevity is limited by wear of the adjacent cartilage. This work investigates the roles of contact geometry and implant stiffness on cartilage wear with the aim of elucidating the mechanics that contribute to cartilage damage. An in vitro study examined the influence of implant geometry on cartilage wear using a pin-on-plate wear simulator. A significant decrease in volumetric wear was observed as contact area increased, which suggests that maximizing contact area should be ...


Passive Acoustic Emissions Monitoring Of Fluidized Bed Pellet Coating, Taylor Sheahan Aug 2015

Passive Acoustic Emissions Monitoring Of Fluidized Bed Pellet Coating, Taylor Sheahan

Electronic Thesis and Dissertation Repository

Passive acoustic emissions were assessed for their potential as a non-invasive monitoring tool for the coating of pellets in a fluidized bed. Pharmaceutical pellets are small spherical particles that contain an active ingredient. They are film coated for the purpose of modified drug release and packed into capsules as a multiple unit dosage form. A more reliable monitoring and control method is desired to ensure the appropriate drug release profile is achieved by minimizing variations within and between coated pellets.

Microphones attached to the exterior of a conical top spray fluidized bed measured acoustic emissions produced from the coating process ...


Bioactive Glass-Ceramic Coating Of Titanium Substrates By Alkaline Hydrothermal Process, Mohamed Gebril Jul 2015

Bioactive Glass-Ceramic Coating Of Titanium Substrates By Alkaline Hydrothermal Process, Mohamed Gebril

Electronic Thesis and Dissertation Repository

Surface modification is a well-known approach to enhance the osseointegration of titanium dental implants. In this study, a novel hydrothermal method for coating titanium surfaces with bioactive glass was developed. Our method included sol-gel synthesis of bioactive glass, followed by hydrothermal coating of titanium under different NaOH concentrations. The surface properties of coated substrates were evaluated by scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and surface profilometry. By varying the alkalinity of the hydrothermal process, different surface topographies, crystalline phases and chemistries could be obtained. Soaking the hydrothermally coated titanium substrates in simulated body fluid resulted in hydroxyapatite ...


Synthesis And Evaluation Of A Novel Polymer Microfiber Drug Delivery System, Julie La Jul 2015

Synthesis And Evaluation Of A Novel Polymer Microfiber Drug Delivery System, Julie La

Electronic Thesis and Dissertation Repository

Skin cancer is the most prevalent cancer diagnosis worldwide. Squamous cell carcinoma (SCC) is one of the most common diagnoses. Fortunately, these cancers are rarely fatal if detected and treated early on. However, current treatment options can be painful, disfiguring and can require long-term treatment courses, resulting in poor patient compliance and cancer progression. Since SCC begins as precancerous lesions, an opportunity exists for early preventative interventions which this work aims to address. We produced stabilized microfibers via centrifugal spinning and UV photocrosslinking composed of poly(ethylene oxide) functionalized with cinnamoyl chloride. Curcumin, a molecule known for its anti-cancer properties ...


Design And Fabrication Of A Multifunctional Nano-On-Micro Delivery System, Alexandra D. Bannerman May 2015

Design And Fabrication Of A Multifunctional Nano-On-Micro Delivery System, Alexandra D. Bannerman

Electronic Thesis and Dissertation Repository

The treatment of tumours using microbeads for embolization and drug delivery is a widely used, but often ineffective, technique. In this work, we aim to produce microbeads for this application with four main improvements: visibility, target-ability, degradability, and an alternative route for drug loading. We accomplish this through the fabrication of ~100μm diameter microbeads composed of poly(vinyl alcohol) (PVA), iron oxide nanoparticles, and cellulose nanocrystals (CNC) using a custom-designed microchannel system. Characterization demonstrated that microbeads were magnetic, as well as visible under clinical CT. Separately, the dissolution of PVA iron oxide hydrogels exposed to different environmental conditions was studied ...


Engineering Periodontal Tissue Regeneration With The Use Of A Novel Periostin Electrospun Scaffold, Kendal I. Creber Mar 2015

Engineering Periodontal Tissue Regeneration With The Use Of A Novel Periostin Electrospun Scaffold, Kendal I. Creber

Electronic Thesis and Dissertation Repository

Clinical therapies for the treatment of periodontitis are unable to reproducibly stimulate regeneration of the periodontium. We assessed the use of a novel electrospun type I collagen scaffold containing recombinant periostin to stimulate regeneration of the periodontal ligament (PDL) and bone. Human PDL cells demonstrated the ability to form a mineralized matrix in vitro and reduced osteogenic potential with increased donor age. In vitro analysis indicated scaffolds were biocompatible, however, periostin did not significantly influence adhesion or growth. In the healing of fenestration defects in rats, type I collagen scaffolds (with and without periostin) initially delayed cell infiltration and increased ...


A New Generation Of Polymer/Ceramic Composite Biomaterials For Bone Regeneration, Mehrnaz Salarian Dec 2014

A New Generation Of Polymer/Ceramic Composite Biomaterials For Bone Regeneration, Mehrnaz Salarian

Electronic Thesis and Dissertation Repository

There is a substantial emerging interest for fundamental and applied research on the reinforcement of polymeric materials using nanotechnology. In the biomedical industry, development of novel bone cement composite materials with enhanced mechanical properties is of tremendous potential importance. The most universally used injectable bone cement is made of poly(methyl methacrylate) (PMMA); however, the major disadvantage of PMMA is its non-biodegradability. Polymers such as poly(propylene fumarate) (PPF) and polycaprolactone (PCL) are biodegradable, but suffer from a lack of mechanical properties. The aim of this research was to test the efficacy of these biodegradable polymers integrating nanotechnology for the ...


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited ...