Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Machine Learning Based Prediction Models For Silicon Heterojunction Solar Cell Optimization, Rahul Jaiswal May 2023

Machine Learning Based Prediction Models For Silicon Heterojunction Solar Cell Optimization, Rahul Jaiswal

Electrical and Computer Engineering ETDs

Silicon heterojunction solar cell of Heterojunction with Thin Intrinsic Layer (HIT) structure is a commercially available technology, and its market share will significantly increase by the next decade. With such a significant market share, any minor improvement in the device’s overall efficiency can be beneficial three folds - customer return on investment, industry revenue, and the overall carbon footprint (from manufacturing to recycling/ disposing of the device). Conventionally, device optimization for solar cells has been achieved using a hit & trial approach where multiple experiments are done to evaluate the best process conditions and device parameters. This approach has some …


Device-Level Predictive Modeling Of Extreme Electromagnetic Interference, Nishchay H. Sule Jul 2020

Device-Level Predictive Modeling Of Extreme Electromagnetic Interference, Nishchay H. Sule

Electrical and Computer Engineering ETDs

Radio Frequency (RF) interference is a prominent issue for modern electronic devices. As device size and supply power shrink to meet the on-going demand for compact and complex Integrated Circuits (ICs), their susceptibility to external noise coupling to the input or power supply increases significantly. One such type of noise that acts upon a system to be considered is Extreme Electromagnetic Interference (EEMI). Previous works done to understand and evaluate the impact of EEMI onto a system or sub-system have been conducted on a statistical or empirical analysis level, which has led to complex and convoluted analysis, that requires significant …


Optical Angular Scatterometry: In-Line Approach For Roll-2-Roll And Nano-Imprint Fabrication Systems, Juan Jose Faria-Briceno Nov 2019

Optical Angular Scatterometry: In-Line Approach For Roll-2-Roll And Nano-Imprint Fabrication Systems, Juan Jose Faria-Briceno

Electrical and Computer Engineering ETDs

As critical dimensions continue to shrink and structures become more complex, metrology processes are challenging to implement during in-line nanomanufacturing. Non-destructive, non-contact, and high-speed conditions are required to achieve proper metrology processes during in-line manufacturing. Optical scatterometry is a nanoscale metrology tool widely used in integrated circuit manufacturing for characterization and quality control. However, most applications of optical scatterometry operate off-line. A high-speed, in-line, non-contact, non-destructive scatterometry angular system has been demonstrated in this work to scan pattern surfaces during real-time nano-fabrication.

Our system has demonstrated scanning capabilities using flat, 1D and 2D complex structures. The flat surface samples consist …


Pixelated Gasb Membranes For Photovoltaics: Fabrication And Structure-Property Relationships, Vijay Saradhi Mangu Jul 2019

Pixelated Gasb Membranes For Photovoltaics: Fabrication And Structure-Property Relationships, Vijay Saradhi Mangu

Electrical and Computer Engineering ETDs

In this thesis, I present a reliable and efficient approach to heterogeneous integration of single-crystalline GaSb semiconductors with highly mismatched materials. The mismatch may refer to the crystalline structure and the thermal expansion coefficient of single-crystalline GaSb and the other materials of interest. The strategy of hetero-integration relies on epitaxial lift-off. This approach prevents the formation of extended structural defects that are detrimental to the performance of optoelectronic devices and preserves GaSb growth substrates for potential reuse.

Within my research work, I have overcome some outstanding challenges of epitaxial lift-off of GaSb, and I have demonstrated the operation of single-crystalline …


Tunneling In Si Mos Nanostructures, Amir Shirkhorshidian Jul 2018

Tunneling In Si Mos Nanostructures, Amir Shirkhorshidian

Electrical and Computer Engineering ETDs

In this dissertation, split-gate tunnel barriers in enhancement-mode silicon metal- oxide-semiconductor (MOS) device structures are characterized electrically at liquid helium temperatures (T = 4.2 K) using transport spectroscopy. Tunnel barriers with different gate geometries and barriers implanted with a small number of antimony donor atoms are characterized. Low disorder MOS tunnel barriers are demonstrated and compared to the implanted cases. The ”clean” MOS tunnel barriers are an important proof of principle that disorder free tunnel barriers can be achieved in MOS. The implanted cases provide an important reference for the effects of donors and shallow traps on a MOS tunnel …


Selected Applications Of Silicon Nanopillar Arrays., Behnam Kheyraddini Mousavi Jul 2018

Selected Applications Of Silicon Nanopillar Arrays., Behnam Kheyraddini Mousavi

Electrical and Computer Engineering ETDs

Interaction of optical waves with nanostructures made of various material systems has been the subject of intensive research for many years. These researches have been mainly driven by the need to make smaller optical devices and exploiting the functionalities offered by light-matter interaction in nanoscale. Majority of the nanostructures are fabricated using electron beam (e-beam) lithography that is slow and expensive. As such alternative methods have been developed to enable nanoscale fabrication faster and less expensive. Among these interferometric lithography (IL) is a relatively simple method for quick fabrication of nanostructures. As IL method generates periodic patterns, exploring the potential …


Integration Of Thin Film Tpv Cells To Cvd Diamond Heat Spreaders, Emma J. Renteria Nov 2017

Integration Of Thin Film Tpv Cells To Cvd Diamond Heat Spreaders, Emma J. Renteria

Electrical and Computer Engineering ETDs

In this work, techniques to isolate thermophotovoltaic (TPV) devices from the growth substrate and their subsequent integration with Chemical Vapor Deposition (CVD) diamond heat spreaders will be discussed, with the envisioned goal of fabricating thermally managed cells. CVD diamond heat spreaders are a great option for thermal management of TPV cells. The key requirement, however, is the bonding of the TPV cell directly onto the diamond wafer without the presence of thick (>350 μm) growth substrates, which can offer significant thermal resistance.

The first approach is to release GaSb epitaxial layers from GaSb substrates. However, this is challenging due …


Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart Jul 2017

Design & Evaluation Of A Hybrid Switched Capacitor Circuit With Wide-Bandgap Devices For Dc Grid Applications, Joshua L. Stewart

Electrical and Computer Engineering ETDs

ABSTRACT

As technologies advance, the rate at which renewable power sources, such as solar photovoltaic (PV) and wind, are being added to the power grid is increasing. Typically, PV power plants require large inverters for direct current to alternating current (DC-AC) power conversion, as well as large transformers to step up voltages to the grid voltage. Offshore wind farms and large PV power plants in remote locations often aggregate power on a DC bus in order to improve efficiency and reduce the cost of power conversion hardware within the energy complex. However, the power must still be converted to AC …


The Effect Of Power Supply Ramp Time On Sram Puf's, Abdelrahman T. Elshafiey Mr. Apr 2017

The Effect Of Power Supply Ramp Time On Sram Puf's, Abdelrahman T. Elshafiey Mr.

Electrical and Computer Engineering ETDs

Physical unclonable functions (PUFs) are security primitives that exploit the device mismatches. PUFs are a promising solution for hardware cryptography and key storage. They are used in many security applications including identification, authentication and key generation. SRAM is one of the popular implementations of PUFs. SRAM PUFs offer the advantage, over other PUF constructions, of reusing resources (memories) that already exist in many designs.

In this thesis, for the first time, it is demonstrated that the start-up value of an SRAM PUF could be different depending on the SRAM power supply rising time. An analytical model has been developed to …


Surface Micromachined Pressure Sensors, William P. Eaton Iv May 1997

Surface Micromachined Pressure Sensors, William P. Eaton Iv

Electrical and Computer Engineering ETDs

Surface micromachined pressure sensors were designed, modeled, fabricated, and tested. They employed a piezoresistive transduction mechanism and were based upon circular diaphragms, which vary from 50 to 1000 μm in diameter and 1 to 2 μm in thickness. The piezoresistors were placed in Wheatstone bridge configurations to provide simple signal amplification and first order temperature compensation.

Of the different micromachining techniques, surface-micromachining has the advantage of being the most similar to integrated circuit manufacturing. Hence an existing IC equipment set can be used to create mechanical structures. Furthermore, the monolithic integration of a mechanical device with control electronics is simpler …