Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 238

Full-Text Articles in Engineering

Additively Manufactured Polymeric Surface-Based Lattice Structures For Vibration Attenuation, Imabin Kelvin Ekpelu Jan 2023

Additively Manufactured Polymeric Surface-Based Lattice Structures For Vibration Attenuation, Imabin Kelvin Ekpelu

Browse all Theses and Dissertations

The focus of this study was to select triply periodic minimal surface (TPMS) structures made of 3D-printed polymers. The primary variables in this study were: TPMS shape, lattice volume ratio, and lattice material. Vibration absorption was characterized by damping ratio via transmissibility at the system’s natural frequency. The vibration testing was performed using an electro-dynamic shaker, a known mass, an input/control accelerometer, and an output/response accelerometer. The 3D-printed absorber/lattice was mounted to the shaker baseplate and a mass will be mounted on top of the absorber. One accelerometer will be mounted to the shaker baseplate and the other will be …


Behavior Of 3d Printed Polymeric Triply Periodic Minimal Surface (Tpms) Cellular Structures Under Low Velocity Impact Loads, Jesse James Leiffer Jan 2022

Behavior Of 3d Printed Polymeric Triply Periodic Minimal Surface (Tpms) Cellular Structures Under Low Velocity Impact Loads, Jesse James Leiffer

Browse all Theses and Dissertations

Surface-based lattice structures such as triply periodic minimal surface (TPMS) lattices are lightweight structures that are widely being investigated for applications in automotive, aerospace, military, railway, and naval structures. Due to the recent advent of three-dimensional (3D) printing (3DP) technologies, architected cellular materials such as surface- or strut-based periodic lattice cell structures have emerged as a unique class of lightweight metamaterials. These materials possess enhanced strength to weight ratio, high stiffness, exceptional capabilities in reducing noise and vibration, insulating heat, and effective impact energy absorption. Understanding the impact behavior of such materials are important so that they can be reliably …


Simulation Of Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Sue Bruggeman Jan 2022

Simulation Of Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Sue Bruggeman

Browse all Theses and Dissertations

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a non-linear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Demonstration Of High-Temperature Operation Of Beta-Gallium Oxide (Β-Ga2o3) Metal-Oxide-Semiconductor Field Effect Transistors (Mosfet) With Electrostatic Model In Comsol, Nicholas Paul Sepelak Jan 2022

Demonstration Of High-Temperature Operation Of Beta-Gallium Oxide (Β-Ga2o3) Metal-Oxide-Semiconductor Field Effect Transistors (Mosfet) With Electrostatic Model In Comsol, Nicholas Paul Sepelak

Browse all Theses and Dissertations

β-Ga2O3 is a robust semiconductor material set with a large band gap of ~4.8 eV, low intrinsic carrier concentration, and high melting point that offers a stable platform for operating electronic devices at high temperatures and extreme environments. The first half of this thesis will cover the fabrication of a fixture and packaging to test electronic components at high temperatures. Then it will highlight the characterization of β-Ga2O3 field effect transistors from room temperature (RT) up to 500 °C. The devices, fabricated with Ni/Au and Al2O3 gate metal-oxide-semiconductor (MOS), demonstrate stable operation up to 500 oC. The tested device shows …


A Digital Twin For Synchronized Multi-Laser Powder Bed Fusion (M-Lpbf) Additive Manufacturing, Shayna Petitjean Jan 2022

A Digital Twin For Synchronized Multi-Laser Powder Bed Fusion (M-Lpbf) Additive Manufacturing, Shayna Petitjean

Browse all Theses and Dissertations

One of the technological challenges in the widespread application of additive manufacturing is the formation of undesired material microstructure and defects. Specifically, in metal additive manufacturing, the microstructural formation of columnar grains in Ti-6Al-4V is common and results in anisotropic mechanical properties and a reduction in properties such as ductility and endurance limit. This work presents the application of hexagonal and circular arrays of synchronized lasers to alter the microstructure of Ti-6Al-4V in favor of equiaxed grains. An anisotropic heat transfer model obtains the temporal/spatial temperature distribution and constructs the solidification map for various process parameters, including laser power, laser …


Development Of Improved Cfd Tools For The Optimization Of A Scramjet Engine, Francis A. Centlivre Jan 2022

Development Of Improved Cfd Tools For The Optimization Of A Scramjet Engine, Francis A. Centlivre

Browse all Theses and Dissertations

In the present work, a plugin has been developed for use with the DoD HPCMP CREATE-AV Kestrel multi-physics solver that adds volumetric source terms to the energy equation. These source terms model the heat released due to combustion, but are much more computationally efficient than a full chemistry model. A thrust-based optimization study was then carried out under the control of Sandia National Laboratories' Dakota toolkit. Dakota was allowed to control the amount of heat added to three regions of the scramjet combustor. The plugin was then extended to consider ignition delay time. By comparing ignition delay time to dwell …


Printing, Characterization, And Mechanical Testing Of Additively Manufactured Refractory Metal Alloys, Brianna M. Sexton Jan 2022

Printing, Characterization, And Mechanical Testing Of Additively Manufactured Refractory Metal Alloys, Brianna M. Sexton

Browse all Theses and Dissertations

Refractory metal alloys in the tungsten molybdenum rhenium ternary system were additively manufactured using laser power bed fusion. Four ternary alloys with varying concentrations of tungsten, molybdenum, and rhenium were manufactured and manufactured again with an addition of 1 wt% hafnium carbide. Samples were heat treated to heal cracks, reduce porosity, and reduce inhomogeneity. Material microstructure was characterized before and after heat treatment using microscopy, energy dispersive x-ray spectroscopy, and electron backscatter diffraction mapping. Mechanical testing was conducted on both three-point bend specimens and compression specimens, resulting in maximum bending strengths of 677.86 MPa, and maximum compression 0.2% yield strengths …


Molecular Dynamics Simulation Study Of A Polymer Droplet Transport Over An Array Of Spherical Nanoparticles, Anish Thomas Jan 2022

Molecular Dynamics Simulation Study Of A Polymer Droplet Transport Over An Array Of Spherical Nanoparticles, Anish Thomas

Browse all Theses and Dissertations

This study uses molecular dynamics simulations to evaluate the dynamic behavior of a partially wetting polymer droplet driven over a nanostructured interface. We consider the bead-spring model to represent a polymeric liquid that partially wets a rough surface composed of a periodic array of spherical particles. Results show that at sufficiently small values of external force, the droplet remains pinned at the particle's surface, whereas above the threshold its motion consists of alternating periods of pinning and rapid displacements between neighboring particles. The latter process involves large periodic variation of the advancing and receding contact angles due to the attachment …


Hypersonic Conceptual Design Tool Comparison, James G. Wnek Jan 2022

Hypersonic Conceptual Design Tool Comparison, James G. Wnek

Browse all Theses and Dissertations

The many iterations needed to explore a design space in the conceptual design process preclude the use of time-consuming RANS CFD for all but a few flight conditions. This research focuses on identifying the level of fidelity needed to adequately predict the aerothermodynamic characteristics of hypersonic vehicles. Three tools with differing levels of fidelity – CBAERO, Cart3D, and Kestrel – were used to analyze the Generic Hypersonic Vehicle (GHV) at the design condition of Mach 5.85 and an off-design condition of Mach 4.5. The results are representative of the different design tools but are not definitive due to the mesh …


Influence Of Fill Percentage And Baking Parameters On The Feedability Of Metal-Cored Arc Welding Wires, Angelica Marie Black Jan 2022

Influence Of Fill Percentage And Baking Parameters On The Feedability Of Metal-Cored Arc Welding Wires, Angelica Marie Black

Browse all Theses and Dissertations

Adequate feedability is essential for GMAW processes to ensure efficiency. The feedability of a wire refers to the wire’s ability to feed continuously through the contact tip. While there are several known causes of feedability difficulties when using cored welding wires, there are many variables that have yet to be explored thoroughly. Three factors are investigated in this research to determine their effects on feedability of cored wires: fill percentage, baking time, and baking temperature. A set of metal-cored arc welding wires were created with various fill percentages, baking times, and baking temperatures. Tension testing, microhardness testing, microstructural characterization, and …


Vibration Bending Fatigue Analysis Of Additively Repaired Ti-6al-4v Airfoil Blades, Lucas Jordan Smith Jan 2022

Vibration Bending Fatigue Analysis Of Additively Repaired Ti-6al-4v Airfoil Blades, Lucas Jordan Smith

Browse all Theses and Dissertations

Repairing airfoil blades is necessary to extend the life of turbine engines. Directed energy deposition (DED) additive manufacturing (AM) provides the ability to add material at a specific location on an existing component. In this work, AM repairs on Ti-6Al-4V airfoil blades were analyzed to determine what effect the repair will have on the blade performance in high cycle vibration fatigue testing. Targeted sections were cut out of airfoil blades near high stress locations and repaired using DED. To understand the defects that arose with this type of repair, computed tomography imaging was used to quantify the defects from the …


Effect Of Build Geometry And Build Parameters On Microstructure, Fatigue Life, And Tensile Properties Of Additively Manufactured Alloy 718, Anna Dunn Jan 2022

Effect Of Build Geometry And Build Parameters On Microstructure, Fatigue Life, And Tensile Properties Of Additively Manufactured Alloy 718, Anna Dunn

Browse all Theses and Dissertations

Additive Manufacturing (AM), particularly laser powder bed fusion, is being studied for use in critical component applications. Tensile and fatigue testing shows differences when built using different laser powers. However, when fabricated in an as-printed geometry, the gauge sections of the two specimens are different and experience different thermal behavior. This work explores microhardness, microstructure size, Niobium segregation, and porosity from samples made with varying laser power and different build geometry sizes representative of the gauge sections in the tensile and fatigue bars. Results show that microhardness varies spatially across the sample. Smaller diameter metallographic coupons (fatigue diameter) have a …


Design Of A Surrogate Hypersonic Inlet For The Hifire-6 Configuration, Joseph W. Mileski Jan 2022

Design Of A Surrogate Hypersonic Inlet For The Hifire-6 Configuration, Joseph W. Mileski

Browse all Theses and Dissertations

Shock wave-boundary layer interactions can significantly impact the operability of high-speed inlets by inducing flow separation. This flow separation is difficult to visualize in three-dimensional, inward-turning inlets because of the curved surfaces that form their internal flow paths. To remedy this challenge, a surrogate test article was created. Using the results from a previously completed Computational Fluid Dynamic (CFD) analysis of the HIFiRE-6, a surrogate inlet with a rectangular isolator section was streamline-traced, allowing for the use of schlieren imagery to capture the separation bubble. This thesis discusses the process of developing the test article. Experimental results from a planned …


Development Of A Combined Thermal Management And Power Generation System Using A Multi-Mode Rankine Cycle, Nathaniel M. Payne Jan 2021

Development Of A Combined Thermal Management And Power Generation System Using A Multi-Mode Rankine Cycle, Nathaniel M. Payne

Browse all Theses and Dissertations

Two sub-systems that present a significant challenge in the development of high performance air vehicle exceeding speeds of Mach 5 are the power generation and thermal management sub-systems. The air friction experienced at high speeds, particularly around the engine, generates large thermal loads that need to be managed. In addition, traditional jet engines do not operate at speeds greater than Mach 3, therefore eliminating the possibility of a rotating power generator. A multi-mode water-based Rankine cycle is an innovative method to address both of these constraints of generating power and providing cooling. Implementing a Rankine cycle-based system allows for the …


Development Of A Computer Model To Simulate Battery Performance For Use In Renewable Energy Simulations, Arjun Sundararajan Jan 2021

Development Of A Computer Model To Simulate Battery Performance For Use In Renewable Energy Simulations, Arjun Sundararajan

Browse all Theses and Dissertations

Renewable and clean energy has been the driving force behind the booming storage industry. The need for producing energy from clean and quickly replenishable energy sources has never been as high as it is now. However, renewable energy only supplies a little over a quarter of the world’s electricity needs and much less of the world’s total energy requirements. One reason is the intermittent nature of renewable energy. Inexpensive and convenient storage technologies are required to solve this issue. It is believed that batteries offer the most viable solution to conquer the problem of renewable energy intermittency. To aid the …


Aqueous Fabrication Of Pristine And Oxide Coated Znse Nanoparticles, Nicholas L. Van Zandt Jan 2021

Aqueous Fabrication Of Pristine And Oxide Coated Znse Nanoparticles, Nicholas L. Van Zandt

Browse all Theses and Dissertations

Semiconducting nanoparticles have received significant attention due to their unique optoelectronic properties. Quantum dots (QDs), a class of spherical nanoparticles, possess a size-dependent bandgap and photoluminescence at visible wavelengths. QDs have many applications including biological labelling, solar cells, chemical impurity detection, and optical glasses. Doping QDs into optical glasses is highly desirable. High-quality QDs can be synthesized via liquid solution methods. However, solution-synthesized QDs often degrade over time and they cannot survive incorporation into a glass melt without protection. In this work, the aqueous synthesis of ZnSe QDs and coating with nanometer silica and alumina protective shells are investigated. The …


Fabrication And Analysis Of High-Performance Thermochemically Densified Wood, Victor Arulappan Pushparaj Jan 2021

Fabrication And Analysis Of High-Performance Thermochemically Densified Wood, Victor Arulappan Pushparaj

Browse all Theses and Dissertations

While wood construction may be as ancient as humanity itself, wood remains one of the most utilized structural materials because of it’s availability, low cost, durability, surprisingly high specific mechanical properties, and renewability. Recent research into wood-based materials has focused on strategies for enhancing the strength and stiffness of as-grown materials. We fabricated densified wood by thermochemically treating raw white oak wood in Na2SO3 and NaOH solutions, followed by compressing the treated wood at 5MPa at high temperature. Treating the raw wood in NaOH and Na2SO3 cleaves the alpha-O-4 ether bond and beta-O-4 ether bonds, thus dissolving most of the …


Functionalizing Ceramic Matrix Composites By The Integration Of A Metallic Substructure With Comparable Feature Size, Elizabeth Pierce Heckman Jan 2021

Functionalizing Ceramic Matrix Composites By The Integration Of A Metallic Substructure With Comparable Feature Size, Elizabeth Pierce Heckman

Browse all Theses and Dissertations

A metallic network has been embedded in a silicon carbide fiber– silicon carbide (SiC) matrix ceramic composite (CMC) in order to combine the functional properties of the metal and the structural properties of the CMC. The processing of the composite involves iterative pre-ceramic polymer infiltration and heating to temperatures at 1100°C. The metallic structure embedded in the CMC must retain its unique properties during processing and cannot convert to a silicide or carbide resulting from diffusion of Si and C species from the SiC matrix. To gain an understanding of the diffusion process, a fully processed CMC with tungsten, tantalum, …


Effect Of Cloud Cover On Optimum Orientations Of Fixed Solar Panels For Maximum Yearly Energy Collection, Prethew Prasad Jan 2021

Effect Of Cloud Cover On Optimum Orientations Of Fixed Solar Panels For Maximum Yearly Energy Collection, Prethew Prasad

Browse all Theses and Dissertations

The amount of cloud cover present in the sky is a significant factor when determining the solar radiation impinging on a solar panel. The optimum tilt required to achieve maximum energy impingement on a surface is also influenced by the amount of cloud cover. This work presents a method for determining the optimum tilt angle for a fixed solar panel when a set amount of cloud cover is present in the sky. Fixed tilt angles that have the most incident solar energy over the course of a year as a function of cloud cover, latitude, and azimuthal angle orientation are …


Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg Jan 2021

Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg

Browse all Theses and Dissertations

A set of guidance control laws is developed for application to a reduced order dynamic aircraft model. A feedback control formulation utilizing a linear quadratic regulator (LQR) is developed, together with methods for easing the design burden associated with gain tuning. Metrics are developed to assess the stability margin of the controller over the full flight envelope of a notional unmanned aerial vehicle (UAV) model. A feedforward control path is then added to the architecture. The performance of the guidance control laws is assessed through time domain step response metrics as well as through execution of a design mission. The …


Utilizing Rotational Energy In Wind Turbine Blades With The Flywheel Mechanism And Predicting The Power Output By Neural Networking, Anamika Mishra Jan 2021

Utilizing Rotational Energy In Wind Turbine Blades With The Flywheel Mechanism And Predicting The Power Output By Neural Networking, Anamika Mishra

Browse all Theses and Dissertations

As we expand and innovate for better and safer living, there will always be a need for new energy sources. By replacing fossil fuels, renewable energy is becoming a viable option for primary power generation. That is why researchers are turning their attention to renewable energy sources and ways of making the most of them. WIND ENERGY is a promising renewable and clean energy source harvested from the wind which is plentiful on the planet. We already have the technology to harvest it, but the efficiency and power output are not optimal. In this thesis, to enhance the energy harvesting …


Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg Jan 2021

Development Of A Robust And Tunable Aircraft Guidance Algorithm, Jacob R. Spangenberg

Browse all Theses and Dissertations

A set of guidance control laws is developed for application to a reduced order dynamic aircraft model. A feedback control formulation utilizing a linear quadratic regulator (LQR) is developed, together with methods for easing the design burden associated with gain tuning. Metrics are developed to assess the stability margin of the controller over the full flight envelope of a notional unmanned aerial vehicle (UAV) model. A feedforward control path is then added to the architecture. The performance of the guidance control laws is assessed through time domain step response metrics as well as through execution of a design mission. The …


Performance Of A Dual Plane Airfoil Model With Varying Gap, Stagger, And Decalage Using Pressure Measurements And Particle Image Velocimetry, Salome Kenneth Nunes Jan 2021

Performance Of A Dual Plane Airfoil Model With Varying Gap, Stagger, And Decalage Using Pressure Measurements And Particle Image Velocimetry, Salome Kenneth Nunes

Browse all Theses and Dissertations

The dual-plane airfoil has been adopted in the design of aircraft wings, wind turbine blades, and propellers. The purpose of this research is to investigate the most important design parameters of a dual-plane airfoil model for the best aerodynamic performance, such as gap, stagger, and decalage. The dual-plane airfoil model was designed using the S826 profile. A mechanical mechanism with electrical actuator control is particularly designed to alter the gap and stagger smoothly, as well as the angle of attack (AOA) for each airfoil. It results in a gap range of 1.38c to 2.17c, a stagger range of -0.75c to …


Contact Fatigue Of Spur Gear Operating Under Starved Lubrication Condition, Aparna Udthala Jan 2021

Contact Fatigue Of Spur Gear Operating Under Starved Lubrication Condition, Aparna Udthala

Browse all Theses and Dissertations

This study describes contact fatigue behavior of spur gear contacts operating under mixed elastohydrodynamic condition. The focus is placed on the starvation effect on fatigue crack initiation. With the model, parametric simulations are carried out with different contact parameters. In the process, the lubricant supply is varied to alter the lubrication condition from fully flooded to severely starved circumstance. Multi-axial stress fields induced by surface normal and tangential tractions are evaluated, whose amplitudes and means are used in a multi-axial fatigue criterion to determine the crack initiation life. It is found a lower lubricant viscosity elongates fatigue life when severe …


Computer Modeling Of Solar Thermal System With Underground Storage Tank For Space Heating, Mohammad Yousef Mousa Naser Jan 2021

Computer Modeling Of Solar Thermal System With Underground Storage Tank For Space Heating, Mohammad Yousef Mousa Naser

Browse all Theses and Dissertations

Space heating is required in almost every dwelling across the country for different periods of time. The thermal energy needed to meet a heating demand can be supplied using different conventional and/or renewable technologies. Solar energy is one example of a renewable resource that can be used for supplying heating needs. It can be utilized either by using photovoltaic panels to generate electricity, that in turn can be used to operate heaters, or by using solar thermal panels. Solar thermal panels obtain higher operating efficiencies than photovoltaic panels, but solar energy for heating purposes suffers from a mismatch between supply …


Numerical Investigation Of Flow Around A Deformed Vacuum Lighter-Than-Air Vehicle, Jared N. Kerestes Jan 2021

Numerical Investigation Of Flow Around A Deformed Vacuum Lighter-Than-Air Vehicle, Jared N. Kerestes

Browse all Theses and Dissertations

This study characterizes the functional dependence of drag on Reynolds number for a deformed vacuum lighter-than-air vehicle. The commercial computational fluid dynamics (CFD) code, FLUENT, is used to preform large eddy simulations (LES) over a range of Reynolds numbers; only Reynolds numbers less than 310,000 are considered. While the overarching goal is drag characterization, general flow-field physics are also discussed, including basic turbulence spectra. All large eddy simulations are preceded by a Reynolds-averaged Navier-Stokes (RANS) simulation using Menter’s shear stress transport (SST) model. The precursor RANS simulation serves to (1) provide realistic initial conditions, (2) decrease the time needed to …


Ab Initio Methylammonium Orientation And Monolayer Effects In Hybrid Perovskite Solar Cells, Jacob M. Artz Jan 2021

Ab Initio Methylammonium Orientation And Monolayer Effects In Hybrid Perovskite Solar Cells, Jacob M. Artz

Browse all Theses and Dissertations

Methylammonium lead triiodide (MAPbI3) has garnered attention due to their high solar cell efficiencies and low cost to manufacture, but commercialization is not yet possible owing to poor environmental stability. Thus, researchers seek ways which optimize the performance of the MAPbI3 solar cell by modifying the architecture and through interfacial engineering of the charge transport layers. Difficulties in understanding these devices arise from ion migration, charge separation and recombination, and metastable, thermally active precessions of the methylammonium (MA) moiety in the lead iodide framework. In this work, focus is given to the perovskite and an adsorbed monolayer, 2,3,4,5,6-pentafluorothiophenol (C6F5SH), which …


Utilizing Rotational Energy In Wind Turbine Blades With The Flywheel Mechanism And Predicting The Power Output By Neural Networking, Anamika Mishra Jan 2021

Utilizing Rotational Energy In Wind Turbine Blades With The Flywheel Mechanism And Predicting The Power Output By Neural Networking, Anamika Mishra

Browse all Theses and Dissertations

As we expand and innovate for better and safer living, there will always be a need for new energy sources. By replacing fossil fuels, renewable energy is becoming a viable option for primary power generation. That is why researchers are turning their attention to renewable energy sources and ways of making the most of them. WIND ENERGY is a promising renewable and clean energy source harvested from the wind which is plentiful on the planet. We already have the technology to harvest it, but the efficiency and power output are not optimal. In this thesis, to enhance the energy harvesting …


Ab Initio Methylammonium Orientation And Monolayer Effects In Hybrid Perovskite Solar Cells, Jacob M. Artz Jan 2021

Ab Initio Methylammonium Orientation And Monolayer Effects In Hybrid Perovskite Solar Cells, Jacob M. Artz

Browse all Theses and Dissertations

Methylammonium lead triiodide (MAPbI3) has garnered attention due to their high solar cell efficiencies and low cost to manufacture, but commercialization is not yet possible owing to poor environmental stability. Thus, researchers seek ways which optimize the performance of the MAPbI3 solar cell by modifying the architecture and through interfacial engineering of the charge transport layers. Difficulties in understanding these devices arise from ion migration, charge separation and recombination, and metastable, thermally active precessions of the methylammonium (MA) moiety in the lead iodide framework. In this work, focus is given to the perovskite and an adsorbed monolayer, 2,3,4,5,6-pentafluorothiophenol (C6F5SH), which …


Correlating In-Situ Monitoring Data With Internal Defects In Laser Powder Bed Fusion Additive Manufacturing, Andrew J. Harvey Jan 2020

Correlating In-Situ Monitoring Data With Internal Defects In Laser Powder Bed Fusion Additive Manufacturing, Andrew J. Harvey

Browse all Theses and Dissertations

The presence of defects within laser powder bed fusion (LPBF) parts can lead to reduced mechanical properties and life of components. Because of this, the ability to detect these defects within the parts is critical before the part is subject to its intended loading. Normally the parts are subjected to a quality analysis once they are completed however, this process is typically expensive and time consuming. A solution for these problems is to sense the creation of defects and pores in the parts in-situ, while the part is being fabricated. One proposed method of in-situ monitoring is visible spectroscopy to …