Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Particle Modeling Of Fuel Plate Melting During Coolant Flow Blockage In Hfir, Hiraku Nakamura May 2014

Particle Modeling Of Fuel Plate Melting During Coolant Flow Blockage In Hfir, Hiraku Nakamura

Doctoral Dissertations

Cooling channel inlet flow blockage has damaged fuel in plate fueled reactors and contributes significantly to the probability of fuel damage based on Probabilistic Risk Assessment. A Smoothed Particle Hydrodynamics (SPH) model for fuel melt from inlet flow blockage for the High Flux Isotope Reactor is created. The model is coded for high throughput graphics processing unit (GPU) calculations. This modeling approach allows movement toward quantification of the uncertainty in fuel coolant flow blockage consequence assessment. The SPH modeling approach is convenient for following movement of fuel and coolant during melt progression and provides a tool for capturing the interactions …


Graphics Processing Unit Bloom Filters: Classical And Probabilistic, Joshua Michael Pyle May 2014

Graphics Processing Unit Bloom Filters: Classical And Probabilistic, Joshua Michael Pyle

Masters Theses

Graphics Processing Units (GPUs) have been used to enhance the speed and efficiency of both data structures and algorithms alike. A common data structure used in Computer Science is the Bloom Filter, which is used in many types of applications including databases and security logging. The Bloom Filter is a lossy data structure that uses several hash functions to store keys into a bit array. A novel, new Bloom Filter meant for use in internet traffic detection called the Probabilistic Bloom Filter has recently been developed. In practice, this new Bloom Filter typically makes use of more hash functions than …


Exploring Computational Chemistry On Emerging Architectures, David Dewayne Jenkins Dec 2012

Exploring Computational Chemistry On Emerging Architectures, David Dewayne Jenkins

Doctoral Dissertations

Emerging architectures, such as next generation microprocessors, graphics processing units, and Intel MIC cards, are being used with increased popularity in high performance computing. Each of these architectures has advantages over previous generations of architectures including performance, programmability, and power efficiency. With the ever-increasing performance of these architectures, scientific computing applications are able to attack larger, more complicated problems. However, since applications perform differently on each of the architectures, it is difficult to determine the best tool for the job. This dissertation makes the following contributions to computer engineering and computational science. First, this work implements the computational chemistry variational …


Parallel For Loops On Heterogeneous Resources, Frederick Edward Weber Dec 2012

Parallel For Loops On Heterogeneous Resources, Frederick Edward Weber

Doctoral Dissertations

In recent years, Graphics Processing Units (GPUs) have piqued the interest of researchers in scientific computing. Their immense floating point throughput and massive parallelism make them ideal for not just graphical applications, but many general algorithms as well. Load balancing applications and taking advantage of all computational resources in a machine is a difficult challenge, especially when the resources are heterogeneous. This dissertation presents the clUtil library, which vastly simplifies developing OpenCL applications for heterogeneous systems. The core focus of this dissertation lies in clUtil's ParallelFor construct and our novel PINA scheduler which can efficiently load balance work onto multiple …


Power Aware Computing On Gpus, Kiran Kumar Kasichayanula May 2012

Power Aware Computing On Gpus, Kiran Kumar Kasichayanula

Masters Theses

Energy and power density concerns in modern processors have led to significant computer architecture research efforts in power-aware and temperature-aware computing. With power dissipation becoming an increasingly vexing problem, power analysis of Graphical Processing Unit (GPU) and its components has become crucial for hardware and software system design. Here, we describe our technique for a coordinated measurement approach that combines real total power measurement and per-component power estimation. To identify power consumption accurately, we introduce the Activity-based Model for GPUs (AMG), from which we identify activity factors and power for microarchitectures on GPUs that will help in analyzing power tradeoffs …


Turbo Bayesian Compressed Sensing, Depeng Yang Aug 2011

Turbo Bayesian Compressed Sensing, Depeng Yang

Doctoral Dissertations

Compressed sensing (CS) theory specifies a new signal acquisition approach, potentially allowing the acquisition of signals at a much lower data rate than the Nyquist sampling rate. In CS, the signal is not directly acquired but reconstructed from a few measurements. One of the key problems in CS is how to recover the original signal from measurements in the presence of noise. This dissertation addresses signal reconstruction problems in CS. First, a feedback structure and signal recovery algorithm, orthogonal pruning pursuit (OPP), is proposed to exploit the prior knowledge to reconstruct the signal in the noise-free situation. To handle the …


Performance Evaluation Of Memory And Computationally Bound Chemistry Applications On Streaming Gpgpus And Multi-Core X86 Cpus, Frederick E. Weber Iii May 2010

Performance Evaluation Of Memory And Computationally Bound Chemistry Applications On Streaming Gpgpus And Multi-Core X86 Cpus, Frederick E. Weber Iii

Masters Theses

In recent years, multi-core processors have come to dominate the field in desktop and high performance computing. Graphics processors traditionally used in CAD, video games, and other 3-d applications, have become more programmable and are now suitable for general purpose computing. This thesis explores multi-core processors and GPU performance and limitations in two computational chemistry applications: a memory bound component of ab-initio modeling and a computationally bound Monte Carlo simulation. For the applications presented in this thesis, exploiting multiple processors is done using a variety of tools and languages including OpenMP and MKL. Brook+ and the Compute Abstraction Layer streaming …


Gpu Implementation Of A Novel Approach To Cramer’S Algorithm For Solving Large Scale Linear Systems, Rosanne Lane West May 2010

Gpu Implementation Of A Novel Approach To Cramer’S Algorithm For Solving Large Scale Linear Systems, Rosanne Lane West

Masters Theses

Scientific computing often requires solving systems of linear equations. Most software pack- ages for solving large-scale linear systems use Gaussian elimination methods such as LU- decomposition. An alternative method, recently introduced by K. Habgood and I. Arel, involves an application of Cramer’s Rule and Chio’s condensation to achieve a better per- forming system for solving linear systems on parallel computing platforms. This thesis describes an implementation of this algorithm on an nVidia graphics processor card us- ing the CUDA language. Increased performance, relative to the serial implementation, is demonstrated, paving the way for future parallel realizations of the scheme.