Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil May 2023

Stream Processor Development Using Multi-Threshold Null Convention Logic Asynchronous Design Methodology, Wassim Khalil

Graduate Theses and Dissertations

Decreasing transistor feature size has led to an increase in the number of transistors in integrated circuits (IC), allowing for the implementation of more complex logic. However, such logic also requires more complex clock tree synthesis (CTS) to avoid timing violations as the clock must reach many more gates over larger areas. Thus, timing analysis requires significantly more computing power and designer involvement than in the past. For these reasons, IC designers have been pushed to nix conventional synchronous (SYNC) architecture and explore novel methodologies such as asynchronous, self-timed architecture. This dissertation evaluates the nominal active energy, voltage-scaled active energy, …


Design And Comparison Of Asynchronous Fft Implementations, Julie Bigot Dec 2022

Design And Comparison Of Asynchronous Fft Implementations, Julie Bigot

Graduate Theses and Dissertations

Fast Fourier Transform (FFT) is a widely used digital signal processing technology in a large variety of applications. For battery-powered embedded systems incorporating FFT, its physical implementation is constrained by strict power consumption, especially during idle periods. Compared to the prevailing clocked synchronous counterpart, quasi-delay insensitive asynchronous circuits offer a series of advantages including flexible timing requirement and lower leakage power, making them ideal choices for these systems. In this thesis work, various FFT configurations were implemented in the low-power Multi-Threshold NULL Convention Logic (MTNCL) paradigm. Analysis illustrates the area and power consumption trends along the changing of the number …


Low-Power And Reconfigurable Asynchronous Asic Design Implementing Recurrent Neural Networks, Spencer Nelson May 2021

Low-Power And Reconfigurable Asynchronous Asic Design Implementing Recurrent Neural Networks, Spencer Nelson

Graduate Theses and Dissertations

Artificial intelligence (AI) has experienced a tremendous surge in recent years, resulting in high demand for a wide array of implementations of algorithms in the field. With the rise of Internet-of-Things devices, the need for artificial intelligence algorithms implemented in hardware with tight design restrictions has become even more prevalent. In terms of low power and area, ASIC implementations have the best case. However, these implementations suffer from high non-recurring engineering costs, long time-to-market, and a complete lack of flexibility, which significantly hurts their appeal in an environment where time-to-market is so critical. The time-to-market gap can be shortened through …


Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize May 2019

Asynchronous Circuit Synthesis Using Multi-Threshold Null Convention Logic, Nicholas Renoudet Mize

Graduate Theses and Dissertations

As the demand for an energy-efficient alternative to traditional synchronous circuit design grows, hardware designers must reconsider the traditional clock tree. By doing away with the constrains of a clock, asynchronous sequential circuit designs can achieve a much greater level of efficiency. The utilization of asynchronous logic synthesis flows has enabled researchers to better implement asynchronous circuit designs which have been optimized using the same industry standard tools that are already used in sequential synchronous designs. This thesis offers a new flow for such tools which implements the MTNCL asynchronous circuit architecture.


Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell Aug 2018

Efficacy Of Multi-Threshold Null Convention Logic In Low-Power Applications, Brent Bell

Graduate Theses and Dissertations

In order for an asynchronous design paradigm such as Multi-Threshold NULL Convention Logic (MTNCL) to be adopted by industry, it is important for circuit designers to be aware of its advantages and drawbacks especially with respect to power usage. The power tradeoff between MTNCL and synchronous designs depends on many different factors including design type, circuit size, process node, and pipeline granularity. Each of these design dimensions influences the active power and the leakage power comparisons. This dissertation analyzes the effects of different design dimensions on power consumption and the associated rational for these effects. Results show that while MTNCL …


Comparison Of Data Transfer Alternatives In Asynchronous Circuits, Mark Howard May 2018

Comparison Of Data Transfer Alternatives In Asynchronous Circuits, Mark Howard

Computer Science and Computer Engineering Undergraduate Honors Theses

Digital integrated circuits (ICs) have become progressively complex in their functionality. This has sped up the demand for asynchronous architectures, which operate without any clocking scheme, considering new challenges in the timing of synchronous systems. Asynchronous ICs have less stringent environmental constraints and are capable of maintaining reliable operation in extreme environments, while also enjoying potential benefits such as low power consumption, high modularity, and improved performance. However, when the traditional bus architecture of synchronous systems is applied to asynchronous designs, handshaking protocols required for asynchronous circuit operation result in significantly increased power consumption, offsetting the low power benefit of …


Asynchronous Circuit Stacking For Simplified Power Management, Andrew Lloyd Suchanek May 2018

Asynchronous Circuit Stacking For Simplified Power Management, Andrew Lloyd Suchanek

Graduate Theses and Dissertations

As digital integrated circuits (ICs) continue to increase in complexity, new challenges arise for designers. Complex ICs are often designed by incorporating multiple power domains therefore requiring multiple voltage converters to produce the corresponding supply voltages. These converters not only take substantial on-chip layout area and/or off-chip space, but also aggregate the power loss during the voltage conversions that must occur fast enough to maintain the necessary power supplies. This dissertation work presents an asynchronous Multi-Threshold NULL Convention Logic (MTNCL) “stacked” circuit architecture that alleviates this problem by reducing the number of voltage converters needed to supply the voltage the …


Asynchronous 3d (Async3d): Design Methodology And Analysis Of 3d Asynchronous Circuits, Francis Corpuz Sabado Dec 2017

Asynchronous 3d (Async3d): Design Methodology And Analysis Of 3d Asynchronous Circuits, Francis Corpuz Sabado

Graduate Theses and Dissertations

This dissertation focuses on the application of 3D integrated circuit (IC) technology on asynchronous logic paradigms, mainly NULL Convention Logic (NCL) and Multi-Threshold NCL (MTNCL). It presents the Async3D tool flow and library for NCL and MTNCL 3D ICs. It also analyzes NCL and MTNCL circuits in 3D IC. Several FIR filter designs were implement in NCL, MTNCL, and synchronous architecture to compare synchronous and asynchronous circuits in 2D and 3D ICs. The designs were normalized based on performance and several metrics were measured for comparison. Area, interconnect length, power consumption, and power density were compared among NCL, MTNCL, and …


Design And Analysis Of An Asynchronous Microcontroller, Michael Hinds Aug 2016

Design And Analysis Of An Asynchronous Microcontroller, Michael Hinds

Graduate Theses and Dissertations

This dissertation presents the design of the most complex MTNCL circuit to date. A fully functional MTNCL MSP430 microcontroller is designed and benchmarked against an open source synchronous MSP430. The designs are compared in terms of area, active energy, and leakage energy. Techniques to reduce MTNCL pipeline activity and improve MTNCL register file area and power consumption are introduced. The results show the MTNCL design to have superior leakage power characteristics. The area and active energy comparisons highlight the need for better MTNCL logic synthesis techniques.


High Temperature Cmos Silicon Carbide Asynchronous Circuit Design, Landon John Caley May 2015

High Temperature Cmos Silicon Carbide Asynchronous Circuit Design, Landon John Caley

Graduate Theses and Dissertations

Designing a digital circuit to operate in an extreme temperature range is a challenge with increasing demand for a solution. Large variations in temperature have a distinct impact on electron mobilities causing substantial changes to the threshold voltage of the devices. These physical changes affect the setup and hold times of clocked components, such as D-Flip Flops, of a traditional synchronous digital circuit. Focusing primarily on high temperature circuit operation, this dissertation presents a digital circuit design methodology pairing an asynchronous circuit design paradigm called NULL Convention Logic (NCL) as well as traditional Boolean circuitry with a wide-bandgap semiconductor material, …


Technology Mapping, Design For Testability, And Circuit Optimizations For Null Convention Logic Based Architectures, Farhad Alibeygi Parsan Dec 2014

Technology Mapping, Design For Testability, And Circuit Optimizations For Null Convention Logic Based Architectures, Farhad Alibeygi Parsan

Graduate Theses and Dissertations

Delay-insensitive asynchronous circuits have been the target of a renewed research effort because of the advantages they offer over traditional synchronous circuits. Minimal timing analysis, inherent robustness against power-supply, temperature, and process variations, reduced energy consumption, less noise and EMI emission, and easy design reuse are some of the benefits of these circuits. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic design paradigms that has been shown to be a promising method for designing delay-insensitive asynchronous circuits.

This dissertation investigates new areas in NCL design and test and is made of three sections. The first section discusses …


Radiation-Hardened Delay-Insensitive Asynchronous Circuits For Multi-Bit Seu Mitigation And Data-Retaining Sel Protection, John Davis Brady May 2014

Radiation-Hardened Delay-Insensitive Asynchronous Circuits For Multi-Bit Seu Mitigation And Data-Retaining Sel Protection, John Davis Brady

Graduate Theses and Dissertations

Radiation can have highly damaging effects on circuitry, especially for space applications, if designed without radiation-hardening mechanisms. Delay-insensitive asynchronous circuits inherently have promising potentials in mitigating the effects of radiation due to their delay insensitivity. This thesis proposes the use of two delay-insensitive asynchronous logic architectures to mitigate the effects of up to two single-event upsets (SEU) and a single-event latch-up (SEL). The multi-bit SEU mitigation with SEL protection architecture improves the original design by providing more integrity against data corruption and lock-ups caused by multi-bit SEUs, and it is expanded to simultaneously provide protection against SEL. The multi-bit SEU …


Design And Analysis Of An Adaptive Asynchronous System Architecture For Energy Efficiency, Brent Michael Hollosi Dec 2012

Design And Analysis Of An Adaptive Asynchronous System Architecture For Energy Efficiency, Brent Michael Hollosi

Graduate Theses and Dissertations

Power has become a critical design parameter for digital CMOS integrated circuits. With performance still garnering much concern, a central idea has emerged: minimizing power consumption while maintaining performance. The use of dynamic voltage scaling (DVS) with parallelism has shown to be an effective way of saving power while maintaining performance. However, the potency of DVS and parallelism in traditional, clocked synchronous systems is limited because of the strict timing requirements such systems must comply with. Delay-insensitive (DI) asynchronous systems have the potential to benefit more from these techniques due to their flexible timing requirements and high modularity. This dissertation …