Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Air Force Institute of Technology

Discipline
Keyword
Publication Year

Articles 1 - 30 of 1384

Full-Text Articles in Engineering

Adaptive-Hybrid Redundancy For Radiation Hardening, Nicolas S. Hamilton Sep 2019

Adaptive-Hybrid Redundancy For Radiation Hardening, Nicolas S. Hamilton

Theses and Dissertations

An Adaptive-Hybrid Redundancy (AHR) mitigation strategy is proposed to mitigate the effects of Single Event Upset (SEU) and Single Event Transient (SET) radiation effects. AHR is adaptive because it switches between Triple Modular Redundancy (TMR) and Temporal Software Redundancy (TSR). AHR is hybrid because it uses hardware and software redundancy. AHR is demonstrated to run faster than TSR and use less energy than TMR. Furthermore, AHR allows space vehicle designers, mission planners, and operators the flexibility to determine how much time is spent in TMR and TSR. TMR mode provides faster processing at the expense of greater energy usage. TSR ...


Target Detection In Heterogeneous Clutter With Low Resolution Radar, Kyle G. Stankowski Sep 2019

Target Detection In Heterogeneous Clutter With Low Resolution Radar, Kyle G. Stankowski

Theses and Dissertations

This thesis develops a framework for SAR target detection and super-resolution in low-resolution environments. The primary focus in this research is the background clutter heterogeneity that often accompanies low range and cross-range resolutions. A corrective model which accounts for clutter replacement is developed to define the detection and false alarm rates of the detector more accurately than a traditional model in which the radar return from the target supplements the existing clutter. In a heterogeneous clutter cell, the clutter replacement model leverages the different scattering distributions among the individual clutter types to generate a probability distribution function for the areas ...


Enabling Mobile Neutron Detection Systems With Clyc, Matthew C. Recker Sep 2019

Enabling Mobile Neutron Detection Systems With Clyc, Matthew C. Recker

Theses and Dissertations

Cs2LiYCl6:Ce3+ (CLYC) has the desirable property of being sensitive to both gamma rays and neutrons while producing waveforms suitable for pulse shape discrimination (PSD) to determine which radiation was detected. This dissertation examines the behavior of CLYC to support its further development for mobile and portable applications. First, the feasibility of performing PSD with CLYC and an inexpensive data acquisition system was examined. This system was able to clearly distinguish both events with a figure of merit of 1.42. Next, the performance of a SiPM was compared to a traditional PMT. Analysis showed that ...


A Study Of Onboarding And Turnover Mediating Variables In U.S. Air Force Officers, Brett S. Bowers Sep 2019

A Study Of Onboarding And Turnover Mediating Variables In U.S. Air Force Officers, Brett S. Bowers

Theses and Dissertations

Employee retention, while always a concern in the workplace, has become a greater challenge for organizations in recent years. Today’s working class has displayed a propensity to change jobs more rapidly than previous generations, exacerbating not only turnover rates but also the costs associated with them (Frankel, 2016). This challenge is especially relevant to the United States Air Force, which has experienced difficulty retaining young officers in recent years. The problems resulting from this voluntary turnover are exceedingly impactful to the military command structure, as senior leaders must work their way up from the lowest ranks. As such, the ...


Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton Sep 2019

Digital Holography Efficiency Experiments For Tactical Applications, Douglas E. Thornton

Theses and Dissertations

Digital holography (DH) uses coherent detection and offers direct access to the complex-optical field to sense and correct image aberrations in low signal-to-noise environments, which is critical for tactical applications. The performance of DH is compared to a similar, well studied deep-turbulence wavefront sensor, the self-referencing interferometer (SRI), with known efficiency losses. Wave optics simulations with deep-turbulence conditions and noise were conducted and the results show that DH outperforms the SRI by 10's of dB due to DH's strong reference. Additionally, efficiency experiments were conducted to investigate DH system losses. The experimental results show that the mixing efficiency ...


Investigations Of Point Defects In Kh2Po4 Crystals Using Ab Initio Quantum Methods, Tabitha E. R. Dodson Sep 2019

Investigations Of Point Defects In Kh2Po4 Crystals Using Ab Initio Quantum Methods, Tabitha E. R. Dodson

Theses and Dissertations

Potassium dihydrogen phosphate (KH2PO4, or commonly called KDP) crystals can be grown to large sizes and are used for many important devices (fast optical switches, frequency conversion, polarization rotation) for high powered lasers. The nonlinear optical material has a wide intrinsic transparency range. Intrinsic point defects are responsible for several short-lived absorption bands in the visible and ultraviolet regions that affect high-power pulsed laser propagation. The primary intrinsic defects have been experimentally detected in KDP using electron paramagnetic resonance (EPR) experiments. The defect models established thus far include (i) self-trapped holes, (ii) oxygen vacancies, and (iii) hydrogen ...


Nondestructive Electromagnetic Characterization Of Perfect-Electric-Conductor-Backed Uniaxial Materials, Adam L. Brooks Sep 2019

Nondestructive Electromagnetic Characterization Of Perfect-Electric-Conductor-Backed Uniaxial Materials, Adam L. Brooks

Theses and Dissertations

As the use of anisotropic materials in electromagnetic applications continues to proliferate, it becomes increasingly important to develop non-destructive evaluation methods for those materials in their installed configuration. In many applications, these materials are permanently affixed onto conducting bodies to reduce unwanted reflections, making it impossible to collect S21 or S12 transmission measurements as used in many techniques based on the well-known Nicolson-Ross-Weir algorithm. It also makes it impractical to reorient the sample to collect orthogonal measurements aligned with the optical axes of the anisotropic material. The goal of this research is to develop a two-reflection coefficient measurement ...


Autonomous And Resilient Management Of All-Source Sensors For Navigation Assurance, Juan D. Jurado Sep 2019

Autonomous And Resilient Management Of All-Source Sensors For Navigation Assurance, Juan D. Jurado

Theses and Dissertations

All-source navigation has become increasingly relevant over the past decade with the development of viable alternative sensor technologies. However, as the number and type of sensors informing a system increases, so does the probability of corrupting the system with sensor modeling errors, signal interference, and undetected faults. Though the latter of these has been extensively researched, the majority of existing approaches have constrained faults to biases, and designed algorithms centered around the assumption of simultaneously redundant, synchronous sensors with valid measurement models, none of which are guaranteed for all-source systems. This research aims to provide all-source multi-sensor resiliency, assurance, and ...


Effects Of Carbon-Based Ablation Products On Hypersonic Boundary Layer Stability, Olivia S. Elliott Sep 2019

Effects Of Carbon-Based Ablation Products On Hypersonic Boundary Layer Stability, Olivia S. Elliott

Theses and Dissertations

Hypersonic vehicles require an accurate prediction of the transition of the boundary layer for the design of the thermal protection system due to the high heating rates under turbulent flow. Many thermal protection systems are carbon-based and introduce new species, specifically CO2, into the boundary layer flow which are known to dampen the instabilities that lead to transition for hypersonic vehicles. A Computation Fluid Dynamics study was accomplished examining the concentration of CO2 required to impact boundary layer transition over both sharp and blunt cones. These results were used in conjunction with air-carbon ablation models models to determine if ...


On The Pulsed Laser Ablation Of Metals And Semiconductors, Todd A. Van Woerkom Aug 2019

On The Pulsed Laser Ablation Of Metals And Semiconductors, Todd A. Van Woerkom

Theses and Dissertations

This dissertation covers pulsed laser ablation of Al, Si, Ti, Ge, and InSb, with pulse durations from tens of picosecond to hundreds of microseconds, fluences from ones of J/cm2 to over 10,000 J/cm2, and in ambient air and vacuum. A set of non-dimensional scaling factors was created to interpret the data relative to the laser and material parameters, and it was found that pulse durations shorter than a critical timescale formed craters much larger than the thermal diffusion length, and longer pulse durations created holes much shallower than the thermal diffusion length. Low transverse order ...


Targeted Germanium Ion Irradiation Of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors, Melanie E. Mace Aug 2019

Targeted Germanium Ion Irradiation Of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors, Melanie E. Mace

Theses and Dissertations

Microscale beams of germanium ions were used to target different locations of aluminum galliumnitride/gallium nitride (AlGaN/GaN) high electron mobility transistors (HEMTs) to determine location dependent radiation effects. 1.7 MeV Ge ions were targeted at the gap between the gate and the drain to observe displacement damage effects while 47 MeV Ge ions were targeted at the gate to observe ionization damage effects. Electrical data was taken pre, during, and post irradiation. To separate transient from permanent degradation, the devices were characterized after a room temperature anneal for at least 30 days. Optical images were also analyzed pre ...


Cislunar Trajectory Generation With Sun-Exclusion Zone Constraints Using A Genetic Algorithm And Direct Method Hybridization, Joshua A. Ostman Aug 2019

Cislunar Trajectory Generation With Sun-Exclusion Zone Constraints Using A Genetic Algorithm And Direct Method Hybridization, Joshua A. Ostman

Theses and Dissertations

Space missions to the Moon have received renewed interest in recent decades. Science missions continue to be sent to the Moon, and several space agencies have aspirations of establishing a human presence on the Moon. With the increased number of artificial objects in cislunar space, the problem of tracking these objects arises. Optical sensors are able to track these objects in deep space. However, optical sensors cannot track objects that are close to the Sun as viewed from the observer. This unobservable region is the Sun-exclusion zone (SEZ). This research attempts to create optimal Moon-Earth transfers which are completely in ...


Point Defects In Lithium Gallate And Gallium Oxide, Christopher A. Lenyk Aug 2019

Point Defects In Lithium Gallate And Gallium Oxide, Christopher A. Lenyk

Theses and Dissertations

Electron paramagnetic resonance (EPR), Fourier-Transform Infrared spectroscopy (FTIR), photoluminescence (PL), thermoluminescence (TL), and wavelength-dependent TL are used to identify and characterize point defects in lithium gallate and β-gallium oxide doped with Mg and Fe acceptor impurities single crystals. EPR investigations of LiGaO2 identify fundamental intrinsic cation defects lithium (VLi) and gallium (V2−Ga) vacancies. The defects’ principle g values are found through angular dependence studies and atomic-scale models for these new defects are proposed. Thermoluminescence measurements estimate the activation energy of lithium vacancies at Ea = 1.05 eV and gallium vacancies at Ea > 2 eV below the ...


Operational Decision Making Under Uncertainty: Inferential, Sequential, And Adversarial Approaches, Andrew J. Keith Aug 2019

Operational Decision Making Under Uncertainty: Inferential, Sequential, And Adversarial Approaches, Andrew J. Keith

Theses and Dissertations

Modern security threats are characterized by a stochastic, dynamic, partially observable, and ambiguous operational environment. This dissertation addresses such complex security threats using operations research techniques for decision making under uncertainty in operations planning, analysis, and assessment. First, this research develops a new method for robust queue inference with partially observable, stochastic arrival and departure times, motivated by cybersecurity and terrorism applications. In the dynamic setting, this work develops a new variant of Markov decision processes and an algorithm for robust information collection in dynamic, partially observable and ambiguous environments, with an application to a cybersecurity detection problem. In the ...


The Trust-Based Interactive Partially Observable Markov Decision Process, Richard S. Seymour Jun 2019

The Trust-Based Interactive Partially Observable Markov Decision Process, Richard S. Seymour

Theses and Dissertations

Cooperative agent and robot systems are designed so that each is working toward the same common good. The problem is that the software systems are extremely complex and can be subverted by an adversary to either break the system or potentially worse, create sneaky agents who are willing to cooperate when the stakes are low and take selfish, greedy actions when the rewards rise. This research focuses on the ability of a group of agents to reason about the trustworthiness of each other and make decisions about whether to cooperate. A trust-based interactive partially observable Markov decision process (TI-POMDP) is ...


Methods For Using Manpower To Assess Usaf Strategic Risk, Calvin J. Bradshaw Iii Jun 2019

Methods For Using Manpower To Assess Usaf Strategic Risk, Calvin J. Bradshaw Iii

Theses and Dissertations

With limited personnel resource funding availability, senior US Air Force (USAF) decision makers struggle to base enterprise resource allocation from rigorous analytical traceability. There are over 240 career fields in the USAF spanning 12 enterprises. Each enterprise develops annual risk assessments by distinctive core capabilities. A core capability (e.g. Research and Development) is an enabling function necessary for the USAF to perform its mission as part of the Department of Defense (DOD). Assessing risk at the core capability is a good start to assessing risk, but is still not comprehensiveness enough. One of the twelve enterprises has linked its ...


Motivating Airmen To Engage With Technical Education: Experimentation And Analysis Using Modern Gamification Techniques, Landon G.M. Tomcho Mar 2019

Motivating Airmen To Engage With Technical Education: Experimentation And Analysis Using Modern Gamification Techniques, Landon G.M. Tomcho

Theses and Dissertations

The development and integration of computer systems into today’s society and the subsequent growth of cyber as a warfighting domain has led to changes in military and civilian conflict. Several traits unique to cyber, including disruption and fast pace of change, has led to issues never before seen in the military environment, especially with educating and training. A new approach that leverages crowd-sourced content has been proposed. This approach relies on motivating military members to voluntarily engage with technical (cyber) education. The application of gamification, a design practice aimed at increasing user engagement by targeting core motivators in humans ...


Machine Learning Models Of C-17 Specific Range Using Flight Recorder Data, Marcus Catchpole Mar 2019

Machine Learning Models Of C-17 Specific Range Using Flight Recorder Data, Marcus Catchpole

Theses and Dissertations

Fuel is a significant expense for the Air Force. The C-17 Globemaster eet accounts for a significant portion. Estimating the range of an aircraft based on its fuel consumption is nearly as old as flight itself. Consideration of operational energy and the related consideration of fuel efficiency is increasing. Meanwhile machine learning and data-mining techniques are on the rise. The old question, "How far can my aircraft y with a given load cargo and fuel?" has given way to "How little fuel can I load into an aircraft and safely arrive at the destination?" Specific range is a measure of ...


Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz Mar 2019

Designing Liquid Crystal For Optoacoustic Detection, Michael T. Dela Cruz

Theses and Dissertations

This research impacts the development of a cost-saving, on-chip device that can replace a wide range of costly, bulky sensors for commercial and defense applications. In particular, the goals of this work were to design and test a sensor that uses the optical properties of liquid crystal (LC) to detect acoustic waves. This began with developing a method to fine-tune the optical features of the liquid crystal. Statistical analysis of select experimental variables, or factors, lead to ideal settings of those variables when creating the sensor. A two-factor and three-factor experiment were separately conducted and analyzed as a preliminary demonstration ...


Preserving Privacy In Automotive Tire Pressure Monitoring Systems, Kenneth L. Hacker Mar 2019

Preserving Privacy In Automotive Tire Pressure Monitoring Systems, Kenneth L. Hacker

Theses and Dissertations

The automotive industry is moving towards a more connected ecosystem, with connectivity achieved through multiple wireless systems. However, in the pursuit of these technological advances and to quickly satisfy requirements imposed on manufacturers, the security of these systems is often an afterthought. It has been shown that systems in a standard new automobile that one would not expect to be vulnerable can be exploited for a variety of harmful effects. This thesis considers a seemingly benign, but government mandated, safety feature of modern vehicles; the Tire Pressure Monitoring System (TPMS). Typical implementations have no security-oriented features, leaking data that can ...


Side Channel Anomaly Detection In Industrial Control Systems Using Physical Characteristics Of End Devices, Ryan D. Harris Mar 2019

Side Channel Anomaly Detection In Industrial Control Systems Using Physical Characteristics Of End Devices, Ryan D. Harris

Theses and Dissertations

Industrial Control Systems (ICS) are described by the Department of Homeland Security as systems that are so \vital to the United States that their incapacity or destruction would have a debilitating impact on our physical or economic security." Attacks like Stuxnet show that these systems are vulnerable. The end goal for Stuxnet was to spin centrifuges at a frequency rate outside of normal operation and hide its activity from the ICS operator. This research aims to provide a proof of concept for an anomaly detection system that would be able to detect an attack like Stuxnet by measuring the physical ...


Physical Layer Discrimination Of Electronic Control Units Using Wired Signal Distinct Native Attribute (Ws-Dnda), Rahn M. Lassiter Mar 2019

Physical Layer Discrimination Of Electronic Control Units Using Wired Signal Distinct Native Attribute (Ws-Dnda), Rahn M. Lassiter

Theses and Dissertations

The Controller Area Network (CAN) bus is a communication system used in automobiles to connect the electronic components required for critical vehicle operations. These components are called Electronic Control Units (ECU) and each one exercises one or more functions within the vehicle. ECUs can provide autonomous safety features and increased comfort to drivers but these advancements may come at the expense of vehicle security. Researchers have shown that the CAN bus can be hacked by compromising authorized ECUs or by physically connecting unauthorized devices to the bus. Physical layer (PHY) device fingerprinting has emerged as one of the accepted approaches ...


Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee Mar 2019

Aerial Simultaneous Localization And Mapping Using Earth's Magnetic Anomaly Field, Taylor N. Lee

Theses and Dissertations

Aerial magnetic navigation has been shown to be a viable GPS-alternative, but requires a prior-surveyed magnetic map. The miniaturization of atomic magnetometers extends their application to small aircraft at low altitudes where magnetic maps are especially inaccurate or unavailable. This research presents a simultaneous localization and mapping (SLAM) approach to constrain the drift of an inertial navigation system (INS) without the need for a magnetic map. The filter was demonstrated using real measurements on a professional survey flight, and on an AFIT unmanned aerial vehicle.


Active Control Of A Morphing Wing Aircraft And Failure Analysis For System Reliability, Madison J. Montgomery Mar 2019

Active Control Of A Morphing Wing Aircraft And Failure Analysis For System Reliability, Madison J. Montgomery

Theses and Dissertations

A morphing wing aircraft has the ability to increase the efficiency of an aircraft by better optimizing lift and drag characteristics during a flight. A morphing wing UAV was designed and constructed by AFRL/RQVS and required a means of control and method of characterizing the performance of the aircraft through flight testing. This research presents the design and construction of a control system capable of adjusting the morphing wing shape based on pilot commands and current flight status. The control system was tested and improved following a flight test crash utilizing failure mode analysis.


A Framework For Cyber Vulnerability Assessments Of Infiniband Networks, Daryl W. Schmitt Mar 2019

A Framework For Cyber Vulnerability Assessments Of Infiniband Networks, Daryl W. Schmitt

Theses and Dissertations

InfiniBand is a popular Input/Output interconnect technology used in High Performance Computing clusters. It is employed in over a quarter of the world’s 500 fastest computer systems. Although it was created to provide extremely low network latency with a high Quality of Service, the cybersecurity aspects of InfiniBand have yet to be thoroughly investigated. The InfiniBand Architecture was designed as a data center technology, logically separated from the Internet, so defensive mechanisms such as packet encryption were not implemented. Cyber communities do not appear to have taken an interest in InfiniBand, but that is likely to change as ...


Orthogonal Frequency Division Multiplexed Waveform Effects On Passive Bistatic Radar, Forrest D. Taylor Mar 2019

Orthogonal Frequency Division Multiplexed Waveform Effects On Passive Bistatic Radar, Forrest D. Taylor

Theses and Dissertations

Communication waveforms act as signals of opportunity for passive radars. However, these signals of opportunity suffer from range-Doppler processing losses due to their high range sidelobes and pulse-diverse waveform aspects. Signals such as the long term evolution (LTE) encode information within the phase and amplitude of the waveform. This research explores aspects of the LTE, such as the encoding scheme and bandwidth modes on passive bistatic Doppler radar. Signal space-time adaptive processing (STAP) performance is evaluated and parameters are compared with the signal to interference-plus-noise ratio (SINR) metric.


Plasma Treatment Method For Ohmic Contacts On Zinc Oxide Thin Film Transistors, Blaine Z. Underwood Mar 2019

Plasma Treatment Method For Ohmic Contacts On Zinc Oxide Thin Film Transistors, Blaine Z. Underwood

Theses and Dissertations

This research utilizes plasma treatments as a method to decrease the contact resistance on zinc oxide (ZnO) thin film transistors (TFT). In recent years, researchers have achieved gigahertz RF switch cutoff frequency with ZnO TFTs. To further increase the cutoff frequency, the total resistance of this device must be minimized. Modern ZnO TFTs are fabricated with submicron channel lengths, which contains minimal resistance due to the TFT channel, making contact resistance significant to the total resistance of the device. This research developed a method to integrate plasma treatments into the fabrication of ZnO TFT to decrease the contact resistance, thus ...


Two-On-One Pursuit With A Non-Zero Capture Radius, Patrick J. Wasz Mar 2019

Two-On-One Pursuit With A Non-Zero Capture Radius, Patrick J. Wasz

Theses and Dissertations

In this paper, we revisit the "Two Cutters and Fugitive Ship" differential game that was addressed by Isaacs, but move away from point capture. We consider a two-on-one pursuit-evasion differential game with simple motion and pursuers endowed with circular capture sets of radius l > 0. The regions in the state space where only one pursuer effects the capture and the region in the state space where both pursuers cooperatively and isochronously capture the evader are characterized, thus solving the Game of Kind. Concerning the Game of Degree, the algorithm for the synthesis of the optimal state feedback strategies of the ...


Piezoelectric Sensor Crack Detection On Airframe Systems, Kevin J. Lin Mar 2019

Piezoelectric Sensor Crack Detection On Airframe Systems, Kevin J. Lin

Theses and Dissertations

In 2008, the Department of Defense published a guidebook for a methodology named Condition-Based Maintenance Plus (CBM+) which capabilities include improving productivity, shortening maintenance cycles, lowering costs, and increasing availability and reliability. This push replaces existing inspection criteria, often conducted as non-destructive testing (NDT), with structural health monitoring (SHM) systems. The SHM system addressed utilizes guided Lamb waves generated by piezoelectric wafer active sensors (PWAS) to detect the existence, size, and location of damage from through-thickness cracks around a rivet hole. The SHM field lacks an experiment testing how small changes in receiver sensor distances affect damage detection. In addition ...


Computational And Experimental Development Of 2d Anisotropic Photonic Crystal Metamaterials, James A. Ethridge Mar 2019

Computational And Experimental Development Of 2d Anisotropic Photonic Crystal Metamaterials, James A. Ethridge

Theses and Dissertations

The future of optical devices involves manipulation of nanoscale structure in order to achieve full control over the properties of the device. In fields as diverse as directed energy, remote sensing, optical communications and optical computing, these devices promise to greatly improve performance and efficiency. To advance this further, novel samples that incorporate both photonic crystal (PhC) structure and metamaterial properties, known as PhC metamaterials, are proposed. These PhC metamaterials allow for complete control over the directionality of the light-matter interaction to serve in these new applications. To develop this technology, first, metamaterials with no PhC structure are fabricated using ...