Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Engineering

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu Apr 2021

Relationship Between Thermal Conductivity And Free Electrons In Metal, Yansong Liu

Senior Theses

An experiment was designed and conducted to explore the relationship between thermal conductivity with free electrons in metal. In the experiment, copper, iron, aluminum, and titanium rods with close diameters were used to carry out the experiment. Each rod was heated up by a heat unit at one end while cooled on the other end with a heat sink to maintain a steady state. DC current was applied to rods in the direction along, as well as against, the heat flow. Thermal conductivities were measured in these two situations for each rod. Results showed electrons do dominate thermal flow inside …


Securing Pint Glasses On Serving Trays With Magnetic Attachments, Jayden Commendatore Apr 2021

Securing Pint Glasses On Serving Trays With Magnetic Attachments, Jayden Commendatore

Senior Theses

It is extremely common for servers in the restaurant industry to have pint glasses slip off their serving tray, wasting both time and money for the restaurant. I have designed a sleeve attachment that will clip on to the bottom of a pint glass. The metal sleeve attachment will be attracted to a magnet placed into the serving tray. This increases the normal force of the pint glass, resulting in an increase in the friction force between the tray and sleeve attachment, and helping secure the glass to the tray. In order to optimize the design, the value of the …


Design Of Smart Trashcan, Haoran Song Apr 2021

Design Of Smart Trashcan, Haoran Song

Senior Theses

A smart trashcan has been designed which can bring convenience to people for throwing their garbage away during the COVID-19 pandemic. A prototype is made from cardboard to demonstrate its function. This trashcan can sense people who are coming and leaving, and it can open and close automatically. The trashcan is powered by solar energy. A solar panel is mounted on top of the trashcan supporter. This design is specifically for use in China.


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr. May 2019

Transferring Power Through A Magnetic Couple, Nickolas Cruz Villalobos Jr.

Senior Theses

Properties of several working magnetic coupled rotors have been measured and their performance compared to theoretical models. Axial magnetic couplers allow rotors to work within harsh environments, without the need for seals, proper alignment, or overload protection on a motor. The influence of geometrical parameters, such as distance from the center of the rotors, polarity arrangement, and the number of dipole pairs were experimentally tested. These results can be used to improve rotor designs, to increase strength and efficiency.


Manufacturing And Testing The Permanent Magnet Linear Motor, Renjie Kang May 2019

Manufacturing And Testing The Permanent Magnet Linear Motor, Renjie Kang

Senior Theses

Controlled mechanical motion is vital in many useful applications in technology. Among them, linear motors have advantages over traditional rotating motors. In this work, we built a permanent magnet linear motor to test and measure its energy efficiency. A maximum 29% total energy efficiency, and 67% energy transfer rate, were detected. In addition, a C-shape support structure was added to the moving part in order to increase the moving accuracy. The tests show that, with the support structure, the fluctuation in the vertical direction decreases significantly, but the friction of the system slightly increases.


A Human Powered Micro-Generator For Charging Electronic Devices, John Adam May 2018

A Human Powered Micro-Generator For Charging Electronic Devices, John Adam

Senior Theses

A hand-pulled generator has been designed and tested. A preliminary result has been obtained and discussed. This device was created to provide outlet-free charging. Electronic devices are useful when going out into the wilderness. A portable power supply is necessary to keep an electronic device alive. This project created a device that converts human energy into electricity to charge electronic devices. This thesis overviews the device’s design, build, and tests. Two different tests were run to determine that the device is capable of charging the storage battery. The device presented can provide 14 minutes of charging time with one hour …


Increasing The Longevity Of Tungsten Filaments In A Zone Refiner, Byron D. Greenlee May 2018

Increasing The Longevity Of Tungsten Filaments In A Zone Refiner, Byron D. Greenlee

Senior Theses

Zone refining is used for its ability to purify material and grow single crystals. To produce these single crystals, a suspended molten zone, generated by electron bombardment, passes along the polycrystalline stock. During a zone refining run, the filaments that produce the electron bombardment can fail. In this project, the longevity of tungsten filaments in a zone refiner was investigated. A new bombardment geometry was constructed to attempt to increase the longevity of the filaments. The new geometry had a shield machined into it to prevent line-of-sight impurities originating in the molten zone from striking the filaments. It was found …


Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett May 2018

Effects Of Tension On Resonant Frequencies Of Strings, Blake Burnett

Senior Theses

This project tests and explores resonance of strings. Since all materials and mechanisms are affected by vibrations, it is important to know the frequencies at which resonance occurs. To explore this subject, strings were used as a model material to test the effect tension has on resonance. The fundamental frequencies and the corresponding modes of resonance were used to analyze the data. The results of this experiment show that increasing tension on a string increases its resonance frequency. Understanding the physics behind resonance frequency allows systems to be designed to take advantage of resonance properties, or to avoid resonance where …


The Effects Of Surface Pace In Baseball, Jason Farlow May 2018

The Effects Of Surface Pace In Baseball, Jason Farlow

Senior Theses

A baseball travels across different surfaces at different paces. The goal of this experiment is to find a percentage difference in speeds the ball will reflect off a given surface. The energy lost on the turf surface was far more significant than on dirt surface as the turf lost an average of 26% of its energy as compared to just 16% of the energy on dirt. In the Northwest conference, teams play on four turf-based infields and five dirt-based infields. The results of this study suggest that kinetic friction forces are more significant in reducing ball rebound speed than in …


Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck May 2018

Thermoelectrics And Thermoelectric Devices, Benjamin T. Erck

Senior Theses

The field of thermoelectrics has many applications, and more are found in everyday systems. From its current studies, it is apparent that improving the figure of merit zT (which defines a good thermoelectric material) is important in the effectiveness of power generation. Another important part of thermoelectrics is the duality of these devices. They can both move heat and generate power, depending on their role in the system. In this thesis research, a process was made to test these thermoelectric relationships for a few Peltier devices in order to understand their efficiencies and what systems they can be applied to.


Measuring The Double Layer Capacitance Of Electrolytes With Varied Concentrations, Geoffrey Rath May 2018

Measuring The Double Layer Capacitance Of Electrolytes With Varied Concentrations, Geoffrey Rath

Senior Theses

When electric potentials are applied from an electrolytic fluid to a metal, a double layer capacitor, Cdl, develops at the interface. The layer directly at the interface is called the Stern layer and has a thickness equal to roughly the size of the ions in the fluid. The next layer, the diffuse layer, arises from the gathering of like charges in the Stern layer. This layer is the distance needed for ionic charges to return to equilibrium. This distance, called the Debye length, λ, depends on the square root of the electrolyte concentration. To study the properties of …


Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri May 2018

Measuring The Double Layer Capacitance Of Electrolyte Solutions Using A Graphene Field Effect Transistor, Agatha Ulibarri

Senior Theses

When operating graphene field effect transistors (GFETs) in fluid, a double layer capacitance (Cdl) is formed at the surface. In the literature, the Cdl is estimated using values obtained using metal electrode experiments. Due to the distinctive electronic and surface properties of graphene, there is reason to believe these estimates are inadequate. This work seeks to directly characterize the double layer capacitance of a GFET. A unique method for determining the Cdl has been implemented, and data has been obtained for three electrolytes and one ionic fluid. The results yield dramatically lower Cdl values than …


The Drag Coefficient Of Varying Dimple Patterns, James M. Seeley, Michael S. Crosser May 2018

The Drag Coefficient Of Varying Dimple Patterns, James M. Seeley, Michael S. Crosser

Senior Theses

There are many golf balls on the market today with varying dimple sizes, shapes, and distribution. These proprietary differences are all designed to reduce drag on the balls during flight, allowing golfers to hit the ball farther distances. There are limited published studies comparing how varying the dimples affects the reduction of drag. An experiment was developed in which golf balls were pulled through a water tank to measure the drag force acting on each ball. The water was chosen to allow for testing at slower velocities than the typical necessary speeds to cause turbulence for balls traveling in air. …


Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck May 2017

Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck

Senior Theses

This paper explores the relationship between the operating temperature and electricity production of a simple heat engine. A Stirling engine was designed and constructed which runs on solar thermal energy collected by a Fresnel lens. The surface area of the solar collector was varied. This manipulated the operating temperature of the Stirling engine in order to measure power output. The mechanical energy from the engine was converted to electricity using a DC motor running in reverse, acting like a generator, in conjunction with an Arduino for data collection. Although adjustments must be made in order to improve the efficiency of …


Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace May 2017

Thin Film Thermal Deposition At Various Pressures, James Kela Yee Keen Grace

Senior Theses

This research was to verify the hypothesis that resistivity of metal's thin film deposited in a low-pressure environment is the same as its solid material. Thermal Evaporation is a thin film deposition technique in which metal inside a vacuum is evaporated, then deposited onto a surface. Higher quality metal films are deposited when the vacuum pressure is lower. At higher pressures, more air molecules are trapped within the layers of metal, thus increasing scattering sites and increasing the resistance. However, reaching a lower pressure requires more time and effort. In this research, films were deposited at various pressures and resistivities …


Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams May 2017

Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams

Senior Theses

A solar cell powered go-kart has been built and tested. The result shows using solar energy alone cannot meet the requirement of running a regular passenger car. This is due to the limited surface area of the passenger car. This thesis also discusses the operating principles of solar panels, the physics of P type and N type semiconductors, and the formation of the PN junction, as well as the solar current. Modifications of an existing go-kart are described in detail in this thesis. Suggestions for making green vehicles are discussed as well.


Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah Devyldere May 2017

Observing Orbital Angular Momentum Transfer From Electron Vortex Beams To Matter, Hannah Devyldere

Senior Theses

It is possible to produce electron beams with non-zero orbital angular momentum. Such beams, known as electron vortex beams, are theoretically able to transfer their orbital angular momenta to matter, causing the matter to rotate. Nanoparticles in an aqueous solution were observed with an electron vortex beam to detect the transfer of orbital angular momentum in a low-friction environment. Observing the transfer of orbital angular momentum to particles in solution is difficult due to the necessity of imaging the particles through a liquid and the random movement of particles in the solution. Thus, orbital angular momentum transfer to matter could …


Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter May 2016

Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter

Senior Theses

The bifacial solar cell is superior to its monofacial predecessor due to its ability to convert both incident light on top and reflected light from below into energy. The scattering of the reflected light is affected by the property of the material on which it is interacting. To date, little work has been contributed to studying the properties of these materials to determine optimal quantities for bifacial solar cells. In the first experiment, reflective efficiencies compared to the angle of reflection were explored for different grit of sandpaper in order to develop an understanding of how surface texture impacts reflectivity. …


Searching To Distinguish Defects And The Presence Of Negative Capacitance, Thaddeus Cox May 2016

Searching To Distinguish Defects And The Presence Of Negative Capacitance, Thaddeus Cox

Senior Theses

In the search for solar cells with lower manufacturing costs, thin film technology was developed. These thin films are only micrometers thick and are grown at relatively low temperatures, resulting in films with imperfections known as defects. Defects can cause thin film solar cells to have lower efficiencies than their single crystalline counterparts. In order to create more efficient thin film solar cells the physical mechanisms behind defects need to be investigated by sensitive techniques. Capacitance measurements of solar cells detect minute changes in charge in the material. For that reason, capacitance is used to electrically characterize the solar cell. …


Momentum Of Particles From Time-Of-Flight Measurements, Joseph Best Dec 2015

Momentum Of Particles From Time-Of-Flight Measurements, Joseph Best

Senior Theses

In order to find the momentum of particles from time of flight measurements, I used a program called Geant4 to simulate experiments. I made a simple two detector setup, and I recreated a real world experiment. I spent a lot of time learning to code in C++ so I could use Geant4 correctly. I simulated these experiments shooting electrons, muons, and pions through the geometry and measured the time at two points in their flight. Subtracting the second time from the first gave me the time of flight distribution for each particle. I used ROOT to draw histograms of the …


Capacitance Measurements Of Defects In Solar Cells: Checking The Model Assumptions, Justin R. Davis May 2015

Capacitance Measurements Of Defects In Solar Cells: Checking The Model Assumptions, Justin R. Davis

Senior Theses

Capacitance measurements of solar cells are sensitive to minute changes in charge in the material. For that reason, capacitance is used in several methods to electrically characterize defects in the solar cell. Standard interpretations of capacitance rely on many assumptions, which, if wrong can skew the results. We explore possible alternative explanations for capacitance transitions, such as a non-ideal back contact and series resistance. Using Drive Level Capacitance Profiling measurements, a capacitance step is linked to a defect between the energy bands of a solar cell.


Power Maximization Of A Three-Phase Hydrokinetic Turbine, Matthew Carleson May 2015

Power Maximization Of A Three-Phase Hydrokinetic Turbine, Matthew Carleson

Senior Theses

As Earth`s expendable resources dwindle, the need for alternative, renewable energy sources grows. Out of this need, an old favorite source is rising in popularity: small water turbines. Water-driven turbines first began as a means for turning mills and eventually evolved into massive dams that can power whole regions. This project focused on the construction of, and testing the properties of, a small pico-hydro power turbine. By using compressed air to drive the turbine, a representation of the peak power output was measured, serving as a basis for determining the value of pico-power systems in regards to the world`s current …


Measuring Strain In Trusses, Spencer Metzsch May 2015

Measuring Strain In Trusses, Spencer Metzsch

Senior Theses

Strain is an important quantity in engineering design and materials science that relates the deformation of a material to its original length, through a percentage. Different materials exhibit particular qualities under loading, for example the amount of strain due to a certain magnitude of force, or the amount of strain that can be borne before failure. This experiment aims to compare the relative strengths of three common truss configurations by measuring the strain in their members under loading. The Queen’s post truss was found to be the best at minimizing strain under similar loading conditions.