Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Physical Sciences and Mathematics

Electrochemistry

Articles 1 - 24 of 24

Full-Text Articles in Engineering

Electrochemical Approaches To Life-Support Resources In Space Missions And Nuclear Technologies: Hydrogen Peroxide And Uranium Films, Armando Manuel Pena-Duarte Aug 2023

Electrochemical Approaches To Life-Support Resources In Space Missions And Nuclear Technologies: Hydrogen Peroxide And Uranium Films, Armando Manuel Pena-Duarte

Open Access Theses & Dissertations

Space race has developed several technological advances that have achieved and continue to achieve the success of space missions in the aerospace timeline. Currently, the number of space technical and scientific innovations is still growing––demanding new materials and developments for extreme performing applications of fuel cells, batteries, supercapacitors, and systems of nuclear energy. Space missions require life-support solutions, auto-sustainable closed-loop living environments, cleaning and sanitizing solutions against pathogens, and safe nuclear-based resources of energy––with fissile materials with well-controlled dimensions within the core fuel elements. Likewise, to guarantee safety conditions, reduce costs, and facilitate operational logistics, space missions must reduce their …


From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy Jul 2023

From Waste To Energy: The Electrochemical Reduction Of Co2 Using Recycled Nanostructured Catalysts, Ibrahim Badawy

Theses and Dissertations

The reduction of carbon dioxide (CO2RR) using electrochemistry is a promising solution for the burgeoning global energy crisis. The overall vision of its implementation relies on renewable energy sources to power the reaction creating carbon neutral products and effectively closing the carbon cycle. Research in this field has come a long way since its inception in the mid-1900s. However, there remain significant hurdles and important considerations to overcome in order to reach full commercialization. Most electrocatalysts tested for CO2RR have been designed solely for maximum performance while ignoring the environmental consequences if such a material were …


The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Use Of Electrochemical Techniques And Statistical Analysis To Investigate The Pitting Probability Of Copper, Sina Matin Mar 2023

Use Of Electrochemical Techniques And Statistical Analysis To Investigate The Pitting Probability Of Copper, Sina Matin

Electronic Thesis and Dissertation Repository

The development of a safe permanent disposal plan is essential for the long-term disposal of used fuel bundles. Nuclear Waste Management Organization (NWMO) has been investigating the deep geologic disposal of nuclear waste which offers the optimum passive safety system with a negligible probability of release of radionuclides into the environment.

The proposed used fuel containers (UFC) for the permanent disposal of high-level nuclear waste in Canada is comprised of a carbon steel vessel coated with a 3 mm corrosion-resistant copper layer deposited using a combination of electrodeposition and cold spray deposition. Although copper is often considered to be thermodynamically …


Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston Jan 2023

Intergranular And Pitting Corrosion Mechanisms Of Sensitized Aluminum Alloy Aa5083, Clayton Egleston

Williams Honors College, Honors Research Projects

The motivation and objectives of this project is to examine the mechanisms of intergranular corrosion (IGC) and pitting corrosion of sensitized AA5083. In this regard, different characterization techniques were used, including optical analysis of microstructure, cyclic potentiodynamic polarization with Tafel fitting, electrochemical impedance spectroscopy with electrical equivalent circuit (EEC) fitting, and potentiostatic current transient monitoring. The transition from IGC to pitting corrosion occurs when the grain boundaries become saturated with the β-phase (Mg2Al3). It was found that AA5083 becomes more vulnerable to pitting corrosion as the degree of sensitization increases.


Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul Feb 2022

Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul

Dissertations and Theses

CO2 emissions from the combustion of fossil fuels and other anthropogenic sources have become the main contributing factors to global warming. Chemical methods of absorbing/capturing CO2 from combustion flue gases have made it a sought-after approach in engineering emission solutions because of its simplistic and convenient operation and high absorption efficiency. The conversion of CO2 into renewable fuels and high energy density chemicals by clean and economic processes has drawn scientists' attention over the decades. The electrocatalytic conversion of CO2 using Sn-based materials has been demonstrated to be a promising method for producing formate, an important …


Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor Aug 2020

Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor

Boise State University Theses and Dissertations

The energy-water nexus poses an integrated research challenge, while opening up an opportunity space for the development of energy efficient technologies for water remediation. Capacitive Deionization (CDI) is an upcoming reclamation technology that uses a small applied voltage applied across electrodes to electrophoretically remove dissolved ionic impurities from wastewater streams. Similar to a supercapacitor, the ions are stored in the electric double layer of the electrodes. Reversing the polarity of applied voltage enables recovery of the removed ionic impurities, allowing for recycling and reuse. Simultaneous materials recovery and water reclamation makes CDI energy efficient and resource conservative, with potential to …


Multi-Component Material For Solar Energy Conversion And Fundamentals Of Lead Acid Batteries, Crystal Ferels Jan 2020

Multi-Component Material For Solar Energy Conversion And Fundamentals Of Lead Acid Batteries, Crystal Ferels

Graduate Research Theses & Dissertations

Synthesis of complex inorganic materials is desirable because their complex composition allows more degrees of freedom and tunability, whose properties differ from their parent components. As an expansion on this concept, we synthesized a quinary compound Ce3FeWS3O6, using a molten flux method and a solvothermal method. The compound crystallizes into a hexagonal crystal system with space group P63/m. Its electric partition shows an anion with the form [(Ce3+)3W6+(S2-)3(O2-)6]3- forcing the transition metal Fe3+ state and leaving no conduction electrons, making the material a semiconductor. This compound is the right candidate as photoelectric material capable of absorbing photons from the solar …


Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi Jan 2020

Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi

Doctoral Dissertations

"Generation of hydrogen and oxygen through catalyst-aided water splitting which has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy production, has been one of the critical topics in recent times. The state of art oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER) catalysts are mostly comprised of precious metals. The current challenge lies in replacing these precious metal-based catalysts with non-precious earth-abundant materials without compromising catalytic efficiency.

This research explores mixed metal selenides containing Fe-Ni, Fe-Co and RhSe which were hydrothermally synthesized and/or electrodeposited and tested for OER and ORR …


Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan Aug 2019

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan

Graduate Theses and Dissertations

In this work, a novel microfluidic pumping approach, redox-magnetohydrodynamics (R-MHD) has improved by materials and device optimization to use in lab-on-a-chip applications. In R-MHD, magnetic flux (B) and ionic current density (j) interacts to generate body force (FB) in between active electrodes, according to the equation FB = j×B. This unique fluid pumping approach is scalable, tunable, generates flat flow profile, and does not require any channels or valves. Pumping performance, such as speed scales with the ionic current density (j) and duration depends on the total charge (Q). The ionic current density (j) results from the conversion of electronic …


Surface Immobilization Of Terpyridine Compounds, Elizabeth Hallett May 2019

Surface Immobilization Of Terpyridine Compounds, Elizabeth Hallett

Chemical Engineering Undergraduate Honors Theses

The deoxydehydration (DODH) of polyols to alkenes is a promising method of producing high-value chemical feedstocks from biomass-derived materials. Current catalytic systems for DODH require the use of costly reducing agents that generate stoichiometric amounts of chemical waste. Immobilizing catalysts on electrode surfaces using chemical linking groups eliminates the need for sacrificial reductants. In this work, glassy carbon electrodes were modified with 4’-(3,4-dihydroxyphenyl)-2,2’:6’,2’’-terpyridine to investigate o-benzoquinone as a potential linking group for DODH, and possibly for other reactions. Previous studies involving electrodes modified with quinone-containing compounds have primarily been focused on catalyzing the oxidation of NADH; the nature or …


An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel Jan 2019

An Experimental And Numerical Investigation Of Flow Accelerated Flibe Corrosion, David B. Weitzel

Nuclear Engineering ETDs

Renewed interest in molten salt reactor technology has brought to light the need for a better understanding of FLiBe corrosion. To this end a flowing FLiBe corrosion test loop was designed to test the flow effects of FLiBe corrosion. The loop consists of a pump, melt tank, and stainless-steel tubing assembly that heats the molten salt to high temperatures and circulates it over test specimens. The experiment has been constructed and has completed initial shakedown testing.

To support the flowing FLiBe experiment, a numerical corrosion model that couples FLiBe electrochemistry, solid metal diffusion, and mass transport was implemented. The model …


Development Of Flexible Nickel-Zinc And Nickel-Iron Batteries, Xianyang Meng Dec 2018

Development Of Flexible Nickel-Zinc And Nickel-Iron Batteries, Xianyang Meng

Dissertations

The fabrication of flexible nickel-zinc batteries using a facile mixing of electroactive components for electrode preparation is presented. Polytetrafluoroethylene (PTFE) is found to be an effective binder by reducing concentration polarization, providing chemical/physical stability and enhancing flexibility. The zinc electrode containing PTFE maintains its original porous morphology even after hundreds of cycles while polymers such as PEO show morphology change. Each component, as well as the assembled flexible cells show desired flexibility and stability even under bending conditions.

The fabrication of flexible nickel-iron batteries using printable composite electrodes embedded with multiwalled carbon nanotubes (CNT) is also presented. All the metal …


Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo Dec 2018

Corrosion Dynamics Of Carbon Steel In Used Fuel Container Environments, Dan Guo

Electronic Thesis and Dissertation Repository

The current Canadian used nuclear fuel container (UFC) design uses a pressure‑grade carbon steel (CS) vessel with its outer surface coated with a thin layer of copper. One concern regarding the structural integrity of the UFC design is the potential internal corrosion of the CS vessel. Moisture trapped inside a UFC could condense within the gap between the hemispherical head and the cylindrical body of the vessel. The internal UFC environment will be exposed to a continuous flux of ionizing radiation arising from the decay of radionuclides trapped in the used UO2 fuel matrix.

This thesis research project investigates …


Controlled Electrochemical Reduction Of Gold And Palladium Metal Precursors In Polyaniline, Nicole Goodwin Dec 2017

Controlled Electrochemical Reduction Of Gold And Palladium Metal Precursors In Polyaniline, Nicole Goodwin

UNLV Theses, Dissertations, Professional Papers, and Capstones

Polyaniline (PANI) has been extensively studied due to its unique electrochemical properties. The conjugated polymer is conductive with high chemical stability below 100°C, mechanical strength, and large surface area. The applications of PANI have included chemical sensing, corrosion inhibition coatings, light emitting diode and as a substrate for metal composite catalysts. Both chemical and electrochemical methods have been developed and utilized in the synthesis of PANI/metal composites. The simultaneous reduction of aniline and metal precursor produces a composite of PANI encapsulated metal, reducing the active surface area available for catalysis. Alternatively, chemical reduction of the metal precursor into preformed PANI …


Biomimetic Devices To Drive A Thermodynamically Uphill Reaction Using Light And To Degrade Industrial Waste Stream Components, Madison Joanne Sloan Jan 2017

Biomimetic Devices To Drive A Thermodynamically Uphill Reaction Using Light And To Degrade Industrial Waste Stream Components, Madison Joanne Sloan

Theses and Dissertations--Chemistry

Given the amount of industrial waste produced each year, as well as the accruing amount of greenhouse gases in our atmosphere produced by the burning of fossil fuels, it is imperative that humanity develop environmentally-sustainable sources of energy and methods of remediation. Nature achieves both of these by use of enzymes as catalysts, inspiring interest in designing biomimetic systems capable of harnessing clean energy and remediating industrial waste. This study examined the ability of enzymes in electrochemical and convective flow systems to achieve these tasks. The first portion studied the incorporation of enzymes into an electrochemical system to drive the …


Corrosion Of Aluminum Current Collector In Cost Effective Rechargeable Lithium-Ion Batteries, Shengyi Li Dec 2016

Corrosion Of Aluminum Current Collector In Cost Effective Rechargeable Lithium-Ion Batteries, Shengyi Li

Theses and Dissertations

Rechargeable lithium ion batteries (LIB) have been widely used as commercial energy storage systems for portable equipment, electronic devices and high power applications (e.g. electronic vehicles). One issue with the commercialized LIB is that expensive, highly toxic and flammable organic solvents are used in the electrolyte and the fabrication process of electrodes. The toxic organic based solvents increase the production cost and lead to significant safety concerns in the event of a battery overcharge or short circuit. The recent development of “green manufacturing” technology allows manufacturers to replace the organic solvents used in the cathode coating process by aqueous based …


Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan Aug 2015

Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan

Theses and Dissertations

Tin, an anode material with a high capacity for lithium-ion batteries, has poor cyclic performance because of the high volume expansion upon lithiation. Based on a literature review of the applications of lithium-ion batteries and current research progress of the tin-based anode materials for lithium-ion batteries, we developed a method to synthesize hollow TiO2 spheres with tin nanoparticles anchored on the inner surface of the TiO2 shell. Such a unique tin/TiO2 composite alleviates the volume change of tin–based anode materials in charge-discharge processes. SnCl2·2H2O (Tin (II) chloride dihydrate) and titanium (IV) isopropoxide (TIPT) were used as the Sn source and …


Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang May 2015

Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang

Doctoral Dissertations

My research focuses on catalysis of oxygen reduction reaction (ORR) by a series of Cu(II) [copper with positive two valence] -1,2,4-triazole complex-based electrocatalysts at the cathode of PEMFC (polymer electrolyte membrane fuel cell), an efficient and environmental friendly energy conversion system compared to internal combustion engines in use today. The sluggish kinetics of ORR considerably limited the performance of PEMFCs. Understanding of ORR mechanism is important for developing affordable, active and durable ORR catalysts for such devices.

The first part of my work focused on improving the ORR performance of Cu(II)-1,2,4-triazole complex-based catalysts in an acidic environment by exploring synthesis …


Molecular Dynamics (Md) Study On The Electrochemical Properties Of Electrolytes In Lithium-Ion Battery (Lib) Applications, Negin Salami Aug 2014

Molecular Dynamics (Md) Study On The Electrochemical Properties Of Electrolytes In Lithium-Ion Battery (Lib) Applications, Negin Salami

Theses and Dissertations

While the high energy density and the power along with longer cycle life and less requirements of maintenance distinguish the rechargeable lithium-ion batteries (LIBs) from other energy storage devices, development of an electrolyte of LIBs with optimized properties still constitutes a challenge towards next-generation LIB systems with robust electrochemical performance. The electrolytes serve as the medium to provide ionic conduction path between the electrodes as their basic function. Conductivity of the solutions are mainly affected by their transport properties and the electrolyte electrode/separator interfacial phenomena. Although many contributions on thermodynamic properties of the electrolytes consist of alkyl carbonates mixed with …


Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore Dec 2013

Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore

Graduate Theses and Dissertations

Unique microfluidic control actuated by simply turning off and on microfabricated electrodes in a small-volume system was investigated for lab-on-a-chip applications. This was accomplished using a relatively new pumping technique of redox-magnetohydrodynamics (MHD), which as shown in this dissertation generated the important microfluidic features of flat flow profile and fluid circulation. MHD is driven by the body force, FB = j × B, which is the magnetic part of the Lorentz force equation, and its direction is given by the right hand rule. The ionic current density, j, was generated in an equimolar solution of potassium ferri/ferro cyanide by applying …


Synthesis And Characterization Of Nanocomposites For Electrochemical Capacitors, Farah Alvi Feb 2012

Synthesis And Characterization Of Nanocomposites For Electrochemical Capacitors, Farah Alvi

USF Tampa Graduate Theses and Dissertations

Presently there are deep concerns over the environmental consequences and the consumption of non-renewable energy sources, with the accelerated greenhouse effect, triggered enormous interest in the use of renewable energy sources e.g., solar, hydropower, wind and geothermal. However the intermittent nature of harvesting renewable energy sources has recently gained considerable attention in the alternative reliable, cost effective, and environmentally friendly energy storage devices. The supercapacitor and lithium ion batteries are considered more efficient electrical energy storage devices than conventional energy storage systems.

Both devices have many useful and important applications; they could be an excellent source for high power and …


The Effect Of The Environment On The Corrosion Products And Corrosion Rates On Gas Transmission Pipelines, Brent Sherar Jun 2011

The Effect Of The Environment On The Corrosion Products And Corrosion Rates On Gas Transmission Pipelines, Brent Sherar

Electronic Thesis and Dissertation Repository

This thesis reports a series of investigations examining external corrosion processes along gas transmission pipelines. TransCanada PipeLines Ltd. (TCPL) has developed six proposed corrosion scenarios to describe external pipeline corrosion, based primarily on corrosion products and corrosion rates (CRs) observed at field sites. The six proposed corrosion scenarios can be divided into two groups: abiotic and biotic. The three abiotic corrosion scenarios are (1) anaerobic corrosion, (2) aerobic corrosion, and (3) anaerobic corrosion turning aerobic; while (4) anaerobic corrosion with microbial effects, (5) aerobic corrosion turning anaerobic with microbial effects, and (6) anaerobic corrosion with microbial effects turning aerobic comprise …


The Theory Of Alloy Deposition And The Effect Of A Rotating Cathode Upon Such Deposition, With Special Attention To The Possibility Of Depositing Sterling Silver, Kenneth J. Stodden May 1941

The Theory Of Alloy Deposition And The Effect Of A Rotating Cathode Upon Such Deposition, With Special Attention To The Possibility Of Depositing Sterling Silver, Kenneth J. Stodden

Bachelors Theses and Reports, 1928 - 1970

In the past few years a great deal of atten­tion has been given to the electrodeposition of alloys. For the main part, this investigation has been of scien­tific interest only; but in a few instances, such work has attained commercial importance.