Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas Jul 2019

System Integration Of C-Arm Robotic Prototype Using Motion Capture Guidance For Accurate Repositioning, Alireza Yazdanshenas

Mechanical Engineering Theses

One of the important surgical tools in spinal surgery is the C-Arm X-ray System. The C-Arm is a large “C” shaped and manually maneuvered arm that provides surgeons and X-ray technicians the ability to take quick quality X-rays during surgery. Because of its five degrees of freedom, the C-Arm can be manually maneuvered around the patient to provide many angles and perspectives, ensuring surgical success.

This system works fine for most surgical procedures but falls short when the C-Arm must be moved out of the way for complicated surgical procedures.

The aim of this thesis is to develop an accurate ...


Remotely Controlled Industrial Robotic Arm And Simulation Of Automated Thermal Furnace, Prince Mehandi Ratta Jan 2019

Remotely Controlled Industrial Robotic Arm And Simulation Of Automated Thermal Furnace, Prince Mehandi Ratta

Dissertations, Master's Theses and Master's Reports

The right execution of controllers ensures the correct analysis of information, generating efficient results and better optimizing the system. In this report, two controllers were designed. Firstly, a remotely controlled robotic arm, since there are no such type commercially available controllers. Moreover, robotic platforms are costly, so students and researchers are often unable to learn the concepts of programming industrial robots. This project makes a non-destructive, remotely-controlled robotic arm to better teach students and researchers about programming and control of robotic arms. Secondly, simulation of an automated thermal furnace for ArcelorMittal on SIMULINK, which is used for the annealing process ...


Robotic Mining Digging Core, John Stefan, Ryan Weir Jan 2018

Robotic Mining Digging Core, John Stefan, Ryan Weir

Williams Honors College, Honors Research Projects

The purpose of this design project is to design a digging core for a lunar robot that will collect large amounts of material buried beneath the surface of Mars so one day, astronauts can use those resources. This lunar robot will be competing in the NASA Robotic Mining Competition, where teams from universities around the country display and test their designs. This design must adhere to a newly implemented rule which states that the amount of gravel a robot collects will determine the team score. The layer of gravel is located underneath a layer of Regolith, which simulates the surface ...


Design, Manufacturing And Control Of An Advanced High-Precision Robotic System For Microsurgery, Arezoo Ebrahimi Dec 2015

Design, Manufacturing And Control Of An Advanced High-Precision Robotic System For Microsurgery, Arezoo Ebrahimi

Electronic Theses and Dissertations

Microsurgeries like ophthalmic surgery confront many challenges like limited workspace and hand motion, steady hand movements, manipulating delicate thin tissues, and holding the instrument in place for a long time. New developments in robotically-assisted surgery can highly benefits this field and facilitate those complicated surgeries. Robotic eye surgery can save time, reduce surgical complications and inspire more delicate surgical procedures that cannot be done currently by surgeon’s hands. In this thesis work, the requirements for ophthalmic surgeries were studied and based on that a robotic system with 6 DOF is proposed and designed. This robotic

system is capable of ...


Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii Dec 2015

Developing And Testing An Anguilliform Robot Swimming With Theoretically High Hydrodynamic Efficiency, John B. Potts Iii

University of New Orleans Theses and Dissertations

An anguilliform swimming robot replicating an idealized motion is a complex marine vehicle necessitating both a theoretical and experimental analysis to completely understand its propulsion characteristics. The ideal anguilliform motion within is theorized to produce ``wakeless'' swimming (Vorus, 2011), a reactive swimming technique that produces thrust by accelerations of the added mass in the vicinity of the body. The net circulation for the unsteady motion is theorized to be eliminated.

The robot was designed to replicate the desired, theoretical motion by applying control theory methods. Independent joint control was used due to hardware limitations. The fluid velocity vectors in the ...