Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing ...


A Comparison Of The Aerodynamic Centers For Panel Code Compressible Corrections And Openfoam 5 For Mach 0.1 To 0.8, Dustin Weaver Dec 2017

A Comparison Of The Aerodynamic Centers For Panel Code Compressible Corrections And Openfoam 5 For Mach 0.1 To 0.8, Dustin Weaver

All Graduate Plan B and other Reports

It is known that the aerodynamic center changes from quarter chord to half chord from incompressible to compressible flows on airfoils. Compressible corrections are derived and implemented in a vortex panel code. These results will be used to find the aerodynamic centers for the specified Mach range of 0.1 to 0.8 in 0.1 increments within - 6 to 6 degrees angle of attack. OpenFOAM 5 cases will be created with specific meshes and settings. The results calculated from OpenFOAM 5 will be compared to the results obtained from the compressible corrections.