Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 61

Full-Text Articles in Engineering

Electrodeposition Of Giant Magnetostrictive Transducers For A Fabricated Mixed Physics Signal Transmission Device, Mina Faltas Dec 2023

Electrodeposition Of Giant Magnetostrictive Transducers For A Fabricated Mixed Physics Signal Transmission Device, Mina Faltas

Nanoscience and Microsystems ETDs

Non-intrusive solutions for communication through a sealed metal vessel requires the use of piezoelectric transducers to transmit acoustic waves through the vessel wall. This approach suffers the disadvantage of compromised security because a potential eavesdropper could decipher the correlation between digital and electric signals of both sides of the system. One solution is a mixed physics system employing magnetostrictive transducers.

For a magnetostrictive transducer to work well in this application, it would have to have a high piezomagnetic constant. This is influenced by soft magnetism and saturation magnetostriction. Nickel-Iron-Cobalt alloys are modified to retain their soft magnetic properties while increasing …


An Exploration Of Tissue Specific Impedance Using Microneedle Based Wearable Sensors, Kaitlyn J.H. Read Nov 2023

An Exploration Of Tissue Specific Impedance Using Microneedle Based Wearable Sensors, Kaitlyn J.H. Read

Nanoscience and Microsystems ETDs

Within this research, I have developed a microneedle-based wearable sensor for plants and fungi, to measure the electrical impedance of different tissues. Electrical impedance measures the physical properties of a material while allowing complex biological systems to be modeled onto a simplified electrical circuit. Microneedles allow for electrical impedance to measure specific tissues without the insulative properties of the cuticle and can be applied to delicate tissues. I have demonstrated the tissue specificity, novel attachment methods, as well as use on both plants and fungi. In chapter 1, I applied microneedle-based impedance to the leaf midrib of a sorghum and …


Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi May 2023

Antimicrobial Activity And Mechanism Of Amyloid Proteins And Synthetic Conjugated Polyelectrolytes, Fahimeh Maghsoodi

Nanoscience and Microsystems ETDs

Although the exact cause of Alzheimer’s disease (AD) is still unknown, it is widely considered that the accumulation of amyloid plaques composed of the amyloid-β (Aβ) peptide in the brain is linked to neurodegeneration. Co-localization of viral DNA with Aβ plaques, the association of brain infection and AD, and research indicating the protective effect of Aβ against bacteria and fungi in mice and human cells have led to the hypothesis that Aβ expression and deposition may be central to its function as an antimicrobial peptide (AMP). In my thesis research, we seek to elucidate how Aβ functions as an AMP …


Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial May 2023

Vi Energy-Efficient Memristor-Based Neuromorphic Computing Circuits And Systems For Radiation Detection Applications, Jorge Iván Canales Verdial

Electrical and Computer Engineering ETDs

Radionuclide spectroscopic sensor data is analyzed with minimal power consumption through the use of neuromorphic computing architectures. Memristor crossbars are harnessed as the computational substrate in this non-conventional computing platform and integrated with CMOS-based neurons to mimic the computational dynamics observed in the mammalian brain’s visual cortex. Functional prototypes using spiking sparse locally competitive approximations are presented. The architectures are evaluated for classification accuracy and energy efficiency. The proposed systems achieve a 90% true positive accuracy with a high-resolution detector and 86% with a low-resolution detector.


Reducing Agglomeration Of Lab-Synthesized And Functionalized Barium Titanate Nanoparticle Composites, Jessica N. Domrzalski May 2023

Reducing Agglomeration Of Lab-Synthesized And Functionalized Barium Titanate Nanoparticle Composites, Jessica N. Domrzalski

Nanoscience and Microsystems ETDs

Barium titanate (BTO) has been extensively studied for its promise in increasing device performance with its high dielectric constant. With the world moving toward miniaturization, research in nanotechnology is paving a road for the future of electronics, energy storage, and batteries. A challenge in understanding BTO’s potential lies in the particles’ tendency to agglomerate. Nanoparticles behave differently than their bulk counterparts, so understanding size effects is a crucial step in understanding BTO. In this work, BTO nanoparticles are synthesized via a hydrolysis reaction, then functionalized via a ligand exchange reaction to reduce agglomeration. BTO is added to epoxy composites at …


Fabrication, Characterization, And Simulation Of Graphene-Copper Electrical Conductors, Raju Prasad Ghimire Dec 2022

Fabrication, Characterization, And Simulation Of Graphene-Copper Electrical Conductors, Raju Prasad Ghimire

Nanoscience and Microsystems ETDs

The addition of nanocarbons to copper (Cu), specifically in the form of graphene (GN), has been shown to enhance copper's properties. GN-Cu nanocomposites can potentially achieve higher electrical, mechanical, and thermal properties compared with copper. These characteristics make GN-Cu materials interesting for several applications including but not limited to interconnects, high voltage lines, and rotating machines. Copper’s microstructure and nanoscale interfacial phenomena between the GN and Cu control charge conduction in GN-Cu materials. In this work, we investigated the possibilities of conductivity enhancement in multi-layered GN-Cu composites both theoretically (classical, quantum, and atomistic models) and experimentally.

Additionally, our work elucidates …


Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan Nov 2022

Characterization Of Materials Properties In Additively Manufactured Aisi-420 Martensitic Steel Deposited By Laser Engineered Net Shaping, Md Mehadi Hassan

Nanoscience and Microsystems ETDs

Metal additive manufacturing (AM) is a disruptive technology enabling the fabrication of complex and near-net-shaped parts by adding material layer-wise. It offers reduced lead production time. AM processes are finding applications in many industrial sectors such as aerospace, automotive, biomedical, and mold tooling. Despite the tremendous advantages of AM, some challenges still prevent this technology's adoption in high-standard applications. Anisotropy and inhomogeneity in the mechanical properties of the as-built parts and the existence of pores and lack-of-fusion defects are considered the main issues in directed energy deposition (L-DED) parts. Laser-engineered net shaping LENS® offers excellent possibilities to fabricate metal tools …


Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles Nov 2022

Material Characterization And Comparison Of Sol-Gel Deposited And Rf Magnetron Deposited Lead Zirconate Titanate Thin Films, Katherine Lynne Miles

Mechanical Engineering ETDs

Lead zirconate titanate (PZT) has been a material of interest for sensor, actuator, and transducer applications in microelectromechanical systems (MEMS). This is due to their favorable piezoelectric, pyroelectric and ferroelectric properties. While various methods are available to deposit PZT thin films, radio frequency (RF) magnetron sputtering was selected to provide high quality PZT films with the added capability of batch processing. These sputter deposited PZT films were characterized to determine their internal film stress, Young’s modulus, composition, and structure. After characterization, the sputtered PZT samples were poled using corona poling and direct poling methods. As a means of comparison, commercially …


Control Mechanisms For Adaptive Nanoscale Devices, David Arredondo Jul 2022

Control Mechanisms For Adaptive Nanoscale Devices, David Arredondo

Nanoscience and Microsystems ETDs

Nanotechnology promises to revolutionize many areas of applied science including materials, synthetic biology, and medicine. Devices may consist of solution-phase information processing systems or molecular robots. Of particular interest are DNA-based systems due to their composability and relatively simple interactions that are suited to bottom-up design. This work introduces high-level designs of robust control mechanisms for nanoscale devices with immediate applications in molecular computing, synthetic biology, and DNA robotics.

Nanoscale systems are dominated by probabilistic chemical behavior, so engineers must take careful consideration to produce predictable systems. Probabilistic behavior in chemical reaction networks (CRNs) yields deterministic evolution of species concentrations …


Physiologically-Based Pharmacokinetics Modeling Of Colloidal Nanoparticles, Anh-Dung Le Jul 2022

Physiologically-Based Pharmacokinetics Modeling Of Colloidal Nanoparticles, Anh-Dung Le

Nanoscience and Microsystems ETDs

Physiologically-based Pharmacokinetics (PBPK) modeling—a mechanistic mathematical tool to predict biodistribution to inform drug development, requires knowledge of the physico-chemical properties of the drug in question as well as the anatomy and physiology of the organism. Unlike with molecular drugs, nanoparticle parameters often need to be estimated by fitting models to time-course data, which can result in large uncertainties in parameter estimates due to a high-dimensional parameter space. Our research addresses this challenge by offering a path to parameter insights using global sensitivity analysis. The first chapter is an overview of the PBPK model structure and mathematical framework used in our …


Fabrication And Characterization Of Carbon Nanotube Metal Matrix Composites For Use In Photovoltaic Gridline Applications, Cayla M. Nelson Jul 2022

Fabrication And Characterization Of Carbon Nanotube Metal Matrix Composites For Use In Photovoltaic Gridline Applications, Cayla M. Nelson

Nanoscience and Microsystems ETDs

Performance reliability is crucial for photovoltaic (PV) cells in both terrestrial and space-based applications. Electrical efficiency losses over time are heavily impacted by electrical losses due to microcracks within the cell structure and metallization failure. Mechanical stresses and thermal cycling of the device can lead to fracture of the current-carrying metal (Ag) lines on the surface of the device, significantly reducing output power. Incorporating carbon nanotubes (CNTs) into PV metal lines as a reinforcement, forming a CNT/Ag metal matrix composite (MMC), enhances the electrical and mechanical performance of the device. In this work the influence of CNT/Ag MMCs were explored …


Application Of Bismuth Oxychloride As A Colorimetric Uv Sensor Material, Kyle James Troche May 2022

Application Of Bismuth Oxychloride As A Colorimetric Uv Sensor Material, Kyle James Troche

Nanoscience and Microsystems ETDs

Sunlight contains about 9% UV radiation with roughly one-third of it penetrating the atmosphere and reaching the Earth’s surface. UV radiation from the sun is classified into three different types: UVA (315- 499 nm), UVB (280- 314nm), and UVC (100- 279 nm). Prolonged exposure to artificial UV radiation or direct sunlight can still induce many adverse effects such as sunburn, weakening of the immune system, and skin cancer. A wide variety of photoresistor, photodiode and colorimetric UV sensors are currently being researched to help monitor UV radiation. Our research is focused on developing a colorimetric UV sensor that is inherently …


Surface Acoustic Wave Characterization And Interdigitated Transducer Optimization For Studying Stress-Enhanced Phenomena, Brian D. Rummel May 2022

Surface Acoustic Wave Characterization And Interdigitated Transducer Optimization For Studying Stress-Enhanced Phenomena, Brian D. Rummel

Nanoscience and Microsystems ETDs

Surface acoustic wave devices have not yet achieved their full potential as the effects of standing acoustic fields on stress-sensitive phenomena in semiconductor systems have been largely unexplored. From this perspective, it is necessary to develop novel methods to characterize surface acoustic wave devices quantitatively and prepare an experimental platform to probe stress-enhanced processes. In this dissertation, interdigitated transducer devices are fabricated on gallium arsenide to evaluate their potential impact on strain-enhanced phenomena. A novel Raman characterization technique characterizes the surface stress induced by a standing acoustic field, revealing stress values on the order of 108 Pa. FEM software …


Enhancing Optical And Thermal Properties Of Nanofibrous Films Inspired By The White Beetle Scale, Bokyung Park May 2022

Enhancing Optical And Thermal Properties Of Nanofibrous Films Inspired By The White Beetle Scale, Bokyung Park

Nanoscience and Microsystems ETDs

The Cyphochilus white beetle has received significant attention recently for its exceptional visible-light-scattering properties, owing to the beetle scale's anisotropic nano-fibrillar network structure. Inspiration from the remarkable optical properties of these biological species has directed research efforts to fabricating biomimetic nano-fibrillar structures with polymer materials. In this work, electrospun silk fibroin polymer films reproduce the white beetle scale's anisotropic nature to draw on its optical scattering properties and further improve the radiative-cooling capabilities of silk fabrics. An anisotropically restructured silk film with a mean fiber diameter of a few hundred nanometers substantially increases optical scattering strength in the visible spectrum …


Controlling The Emission Of Volatile Platinum Oxides To The Vapor Phase In Diesel Oxidation Catalysts, Arnab Ghosh Jan 2022

Controlling The Emission Of Volatile Platinum Oxides To The Vapor Phase In Diesel Oxidation Catalysts, Arnab Ghosh

Nanoscience and Microsystems ETDs

Pt-based catalysts are used for the treatment of emissions from vehicles, particularly in Diesel oxidation catalysts (DOCs). Three-way catalysts are treated at temperatures ranging from 950℃-1050℃ while DOCs are aged at 800℃ for 50 hrs. At 800°C, Pt reacts with O2 to form PtO2 which has a high vapor pressure and can be transported through the vapor phase. These accelerated aging conditions lead to the formation of large Pt particles causing a loss of catalytic activity. In this thesis, we used model thin-film catalysts that made it possible to quantify the emission of Pt to the vapor phase …


The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


Silica Sol-Gel Control With High Voltage Contactless Electrodes, Jonathan C. Hebert Nov 2021

Silica Sol-Gel Control With High Voltage Contactless Electrodes, Jonathan C. Hebert

Nanoscience and Microsystems ETDs

High Voltage Contactless Electrodes (HVE) non-evasively modulates silica sol-gel reactions by redistributing charge in solution. HVE induces formation of local neutral band (LNB) strata (pseudo interfacial surfaces) where the gradient of potential is zero ∇𝜓𝜓=0. HVE LNB shape corresponds to solubility and ultimately sol-gel form. HVE silica sol-gel control works by localizing pH and creating conditions where silanol polymerization is biform; condensation by protonation (cathodic), or by deprotonation (anodic). Steric modified Poisson-Boltzmann equation is used to develop a theory on HVE control of silica sol-gel formation and a nucleate potential functional of potential 𝜓𝜓. Technologies developed during this research are …


The Physics Of Slot-Die And Gravure Coating Associated With Precision Thin Films And Coating Defects, Robert E. Malakhov Sep 2021

The Physics Of Slot-Die And Gravure Coating Associated With Precision Thin Films And Coating Defects, Robert E. Malakhov

Nanoscience and Microsystems ETDs

Enabling future printable and flexible electronic (PFE) devices and technologies requires overcoming the technical challenge of manufacturing precision thin films and features at scale. Coating- and print-feature functionality for PFEs is imparted with dispersed active particulate inks that provide electronic properties via slot-die coating, a pre-metered film-deposition process, and gravure printing, a high-throughput, precision process. Both are poised to be ideal manufacturing technologies for PFEs but require further research to understand particulate effects in defect formation and processability. Therefore, overcoming the technical challenges of precision, throughput, and the complexities of particulate inks is the purpose of this work. For slot-die …


Converting Parylene C Into A Thin Film Piezoelectric Material, Murali Manohar Duggina Jul 2021

Converting Parylene C Into A Thin Film Piezoelectric Material, Murali Manohar Duggina

Nanoscience and Microsystems ETDs

Thin-film piezoelectric materials are increasing in demand, but most materials are stiff ceramic materials. Polyvinylidene fluoride (PVDF) is a common polymer piezoelectric material, but it has limitations such as it requires post-processing steps to promote appropriate β-phase and it has a low operating and Curie Temperature, which limits its use in traditional microfabrication processing. The toxicity of PZT makes it incompatible with biomedical applications. Therefore, there is a need to develop a new class of polymer piezoelectric films that are compatible with current microfabrication methods. Parylene C (PA-C) is a chemical vapor deposited semi-crystalline polymer material with a nonsymmetric polymer …


Probing The Impacts Of Ultra-Low Platinum Loadings On Membrane Degradation Mechanisms, Andre J. Spears Dec 2020

Probing The Impacts Of Ultra-Low Platinum Loadings On Membrane Degradation Mechanisms, Andre J. Spears

Nanoscience and Microsystems ETDs

Membrane chemical degradation is one of many factors that can impact fuel cell durability. The fuel cell’s performance and lifetime heavily depends on the membrane and its ability to maintain chemical and mechanical integrity. In Nafion® membranes, hydroxyl radicals are the primary cause of chemical membrane degradation as they attack the membrane’s polymer structure. Radical formation can ensue via peroxide decomposition at the cathode or gases reacting on Pt particles or contaminants like Fe (a fenton's reagent) within the membrane. As radicals attack the membrane’s polymer structure the membrane thins, and fluoride and sulfate ions are released. This consequently …


Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao Nov 2020

Radial Basis Densities And The Density Functional-Based Atom-In-Molecule: Designing Charge-Transfer Potentials, Godwin Amo-Kwao

Nanoscience and Microsystems ETDs

Classical potentials that are capable of describing charge transfer and charge polarization in complex systems are of central importance for classical atomistic simulation of biomolecules and materials. Current potentials—regardless of the system—do not generalize well, and, with the exception of highly-specialized empirical potentials tuned for specific systems, cannot describe chemical bond formation and breaking. The charge-transfer embedded atom method (CT-EAM), a formal, DFT-based extension to the original EAM for metals, has been developed to address these issues by modeling charge distortion and charge transfer in interacting systems using pseudoatom building blocks instead of the electron densities of isolated atoms. CT-EAM …


Gan Nanowire Laser For A Universal Atomic Force Microscope Probe: A Computational And Feasibility Study, Neal Wostbrock Nov 2020

Gan Nanowire Laser For A Universal Atomic Force Microscope Probe: A Computational And Feasibility Study, Neal Wostbrock

Nanoscience and Microsystems ETDs

This thesis attempts to establish the groundwork for integrating a GaN nanowire into an AFM probe resulting in a universal atomic force microscope probe. Previous studies have shown GaN nanowires have stable mechanical properties, can be fabricated at scale with high aspect ratios and very smooth side walls, and have intrinsic lasing capabilities; however, mechanical and lasing capabilities have not yet been integrated into a single AFM probe. Here, we develop and analyze a suspended waveguide optical pumping concept that can be fabricated and applied to an AFM probe cantilever, unlocking full potential of GaN’s optical and mechanical properties as …


Plasmon-Induced Color And Photochemistry, Paul J. Gieri Oct 2020

Plasmon-Induced Color And Photochemistry, Paul J. Gieri

Nanoscience and Microsystems ETDs

In recent decades, metallic nanostructures have been extensively studied for a variety of applications due to the ability to support surface plasmons. These excitations, which consist of collective resonant oscillations of the conduction electrons, couple strongly to visible light, confining it into subwavelength volumes. In the first part of this work, we study the optical response of metallic nanostructures supported by metallic substrates. We demonstrate that these systems support a charge transfer plasmon mode, whose frequency is primarily determined by the geometry of the contact area between the nanoparticle and the substrate. In the following part, we exploit this knowledge …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


Effects Of Temperature And Nitrogen Depletion On Biodiesel Production Under Saline Conditions By A Mixed Algal Community, Sarah J. Kintner Dec 2019

Effects Of Temperature And Nitrogen Depletion On Biodiesel Production Under Saline Conditions By A Mixed Algal Community, Sarah J. Kintner

Nanoscience and Microsystems ETDs

The overall objective addressed in this research was to gain a better understanding of how native mixed cultures of phototrophic microorganisms from a saline system may be used for biodiesel production. Laboratory batch reactors were grown under variable temperatures and nitrogen concentrations with original inoculum from a hypersaline pond in central New Mexico. Growth at 40 C° led to lower lipid production, lower nitrate consumption, and less diverse communities than growth at 20° C. All communities were dominated by the cyanobacteria Plectonema except the in second experiment, where they were only 30% of the culture. In a second experiment with …


Optical Angular Scatterometry: In-Line Approach For Roll-2-Roll And Nano-Imprint Fabrication Systems, Juan Jose Faria-Briceno Nov 2019

Optical Angular Scatterometry: In-Line Approach For Roll-2-Roll And Nano-Imprint Fabrication Systems, Juan Jose Faria-Briceno

Electrical and Computer Engineering ETDs

As critical dimensions continue to shrink and structures become more complex, metrology processes are challenging to implement during in-line nanomanufacturing. Non-destructive, non-contact, and high-speed conditions are required to achieve proper metrology processes during in-line manufacturing. Optical scatterometry is a nanoscale metrology tool widely used in integrated circuit manufacturing for characterization and quality control. However, most applications of optical scatterometry operate off-line. A high-speed, in-line, non-contact, non-destructive scatterometry angular system has been demonstrated in this work to scan pattern surfaces during real-time nano-fabrication.

Our system has demonstrated scanning capabilities using flat, 1D and 2D complex structures. The flat surface samples consist …


Near-Field And Far-Field Microscopic And Spectroscopic Characterizations Of Coupled Plasmonic, Excitonic And Polymeric Materials, Chih-Feng Wang Nov 2019

Near-Field And Far-Field Microscopic And Spectroscopic Characterizations Of Coupled Plasmonic, Excitonic And Polymeric Materials, Chih-Feng Wang

Optical Science and Engineering ETDs

The properties of localized surface plasmons (LSP) have been broadly utilized for chemical sensing, surface enhanced Raman spectroscopy, biomedical imaging and photothermal treatments. By exploiting well-established plasmonic effects, the spectroscopic investigation of intriguing quantum phenomena, such as excitonic interband and intersubband (ISB) transitions in semiconductor heterostructures, was examined and extended in both far- and near-field optical measurements. For far-field characterization, we used colloidal plasmonic Au nanorods (AuNRs) to increase the quantum efficiency of InGaAs/GaAs single quantum well. By analyzing the temperature-dependent photoluminescence enhancement as a function of GaAs capping layer thickness, we attributed the mechanism of the LSP enhancement to …


Diagnostic Sequence Detection Against A Complex Background Using A Dna Molecular Computation Framework, Adan Leon Myers Y Gutierrez Oct 2019

Diagnostic Sequence Detection Against A Complex Background Using A Dna Molecular Computation Framework, Adan Leon Myers Y Gutierrez

Nanoscience and Microsystems ETDs

Diagnostic assays are designed to detect a unique analyte profile in a disease of interest. Nucleic acids contain an information-dense sequence, and thus are ideal candidates for unique analytes. The gold-standard of nucleic-acid-based detection is PCR which has high sensitivity, but involves time, expertise, and cost. DNA molecular logic technology holds much promise as an alternative molecular detection method due to the potential to save cost and expertise, while also achieving a high sensitivity. However, nucleic acid detection in biomedical applications carries with it the difficulty of choice of appropriate sequence and potential biological sample background.

This work describes the …


Multifunctional Properties Of Gan Nws Applied To Nanometrology, Nanophotonics, And Scanning Probe Microscopy/Lithography, Mahmoud Behzadirad May 2019

Multifunctional Properties Of Gan Nws Applied To Nanometrology, Nanophotonics, And Scanning Probe Microscopy/Lithography, Mahmoud Behzadirad

Optical Science and Engineering ETDs

GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical bandgap. Recent researches have shown superior mechanical properties of GaN nanowires which promises their use in new research areas e.g. nanometrology. In this work, we develop a scalable two-step top-down approach using interferometric lithography as well a bottom-up growth of NWs using MOCVD, to manufacture highly-ordered arrays of nanowires with atomic surface roughness and desired aspect-ratios to be used in nanophotonics and atomic precision metrology and lithography. Using this method, uniform nanowire arrays were achieved over large-areas (~1 mm2) with aspect-ratio …


Microsphere-Based Disordered Photonic Structures: Control Of Randomness In Langmuir-Blodgett Assembly And Radiative Cooling Applications, Sarun Atiganyanun May 2019

Microsphere-Based Disordered Photonic Structures: Control Of Randomness In Langmuir-Blodgett Assembly And Radiative Cooling Applications, Sarun Atiganyanun

Nanoscience and Microsystems ETDs

Many biological photonic structures in nature exhibit a significant degree of disorder within their periodic framework that enhances their optical properties. However, how such disorder contributes to the unique photonic characteristics is not yet fully understood. To facilitate studies on this topic, we investigated self-assembly of microspheres as a method to controllably introduce randomness to photonic structures. Specifically, we examined Langmuir-Blodgett assembly, a layer-by-layer fabrication technique. We developed and experimentally verified a model for the process and determined a condition of surface pressure and substrate pulling speed that corresponds to a maximum structural order in a layer. Along the trajectory …