Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 69

Full-Text Articles in Engineering

Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo Dec 2016

Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo

Open Access Dissertations

Thermal barrier coatings (TBCs) are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The current state-of-art TBC material is yttria-stabilized zirconia (YSZ), whose service temperature is limited to 1200 celsius, due to sintering and phase transition at higher temperatures. In comparison, lanthanum zirconate (La2Zr2O7, LZ) has become a promising candidate material for TBCs due to its lower thermal conductivity and higher phase stability compared to YSZ.

The primary objective of this thesis is to design a novel robust LZ-based TBC system suitable for applications beyond 1200 celsius. Due to LZ’s low …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya Dec 2016

Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya

Open Access Dissertations

Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy …


Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares Dec 2016

Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares

Open Access Dissertations

In this work, the ability to use high frequency mechanical excitation to generate significant heating within plastic bonded explosives, as well as single energetic particles embedded within a viscoelastic binder, is studied. In this work, the fundamental mechanisms associated with the conversion of high-frequency mechanical excitation to heat as applied to these composite energetic systems are thoroughly investigated.

High-frequency contact excitation has been used to generate a significant amount of heat within samples of PBX 9501 and representative inert mock materials. Surface temperature rises on the order of 10 °C were observed at certain frequencies over a range from 50 …


Bridge Maintenance To Enhance Corrosion Resistance And Performance Of Steel Girder Bridges, Luis M. Moran Yanez Dec 2016

Bridge Maintenance To Enhance Corrosion Resistance And Performance Of Steel Girder Bridges, Luis M. Moran Yanez

Open Access Dissertations

The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. …


Modeling Fluid Interactions With The Rigid Mush In Alloy Solidification, Alexander J. Plotkowski Aug 2016

Modeling Fluid Interactions With The Rigid Mush In Alloy Solidification, Alexander J. Plotkowski

Open Access Dissertations

Macrosegregation is a casting defect characterized by long range composition differences on the length scale of the ingot. These variations in local composition can lead to the development of unwanted phases that are detrimental to mechanical properties. Unlike microsegregation, in which compositions vary over the length scale of the dendrite arms, macrosegregation cannot be removed by subsequent heat treatment, and so it is critical to understand its development during solidification processing. Due to the complex nature of the governing physical phenomena, many researchers have turned to numerical simulations for these predictions, but properly modeling alloy solidification presents a variety of …


Fabrication And Characterization Of Cellulose Nanocrystal Enhanced Sustainable Polymer Nanocomposites Through Surface Chemistry And Processing, Shane X. Peng Aug 2016

Fabrication And Characterization Of Cellulose Nanocrystal Enhanced Sustainable Polymer Nanocomposites Through Surface Chemistry And Processing, Shane X. Peng

Open Access Dissertations

Cellulose nanocrystals (CNCs) belong to a class of cellulose based nanomaterials that are extracted from renewable and sustainable sources and have excellent mechanical and thermal properties. While applications for CNCs have been expanding, one of the challenges of utilizing CNCs is to overcome their low dispersibility in hydrophobic polymers. In the present work, several approaches are utilized to improve the interfacial compatibility and overall performance of CNC/epoxy and CNC/polyamide nanocomposite.

For a two-part epoxy system, a novel approach was taken to disperse CNC in epoxy matrix by pre-formulating CNC into the hardeners. Three types of hardeners were evaluated for their …


Nanoparticle-Based Electrochemical Sensors For The Detection Of Lactate And Hydrogen Peroxide, Aytekin Uzunoglu Aug 2016

Nanoparticle-Based Electrochemical Sensors For The Detection Of Lactate And Hydrogen Peroxide, Aytekin Uzunoglu

Open Access Dissertations

In the present study, electrochemical sensors for the detection of lactate and hydrogen peroxide were constructed by exploiting the physicochemical properties of metal ad metal oxide nanoparticles. This study can be divided into two main sections. While chapter 2, 3, and 4 report on the construction of electrochemical lactate biosensors using CeO2 and CeO2-based mixed metal oxide nanoparticles, chapter 5 and 6 show the development of electrochemical hydrogen peroxide sensors by the decoration of the electrode surface with palladium-based nanoparticles. First generation oxidase enzyme-based sensors suffer from oxygen dependency which results in errors in the response current of the sensors …


Modeling Transport Phenomena And Uncertainty Quantification In Solidification Processes, Kyle S. Fezi Aug 2016

Modeling Transport Phenomena And Uncertainty Quantification In Solidification Processes, Kyle S. Fezi

Open Access Dissertations

Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport …


Modeling Picking On Pharmaceutical Tablets, Shrikant Swaminathan Aug 2016

Modeling Picking On Pharmaceutical Tablets, Shrikant Swaminathan

Open Access Dissertations

Tablets are the most popular solid dosage form in the pharmaceutical industry because they are cheap to manufacture, chemically and mechanically stable and easy to transport and fairly easy to control dosage. Pharmaceutical tableting operations have been around for decades however the process is still not well understood. One of the common problems faced during the production of pharmaceutical tablets by powder compaction is sticking of powder to the punch face, This is known as 'sticking'. A more specialized case of sticking is picking when the powder is pulled away form the compact in the vicinity of debossed features. In …


Energy Transfer And Localization In Molecular Crystals, Mitchell A. Wood May 2016

Energy Transfer And Localization In Molecular Crystals, Mitchell A. Wood

Open Access Dissertations

With the aim of developing new technologies for the detection and defeat of energetic materials, this collection of work was focused on using simulations to characterize materials at extremes of temperature, pressure and radiation. Each branch of the work here is collected by which material response is potentially used as the detectable signal.

Where the chemical response is of interest, this work will explore the possibility of non-statistical chemical reactions in condensed-phase energetic materials via reactive molecular dynamics (MD) simulations. We characterize the response of three unique high energy density molecular crystals to different means of energy input: electric fields …


Analytical And Experimental Investigation Of Microstructural Alterations In Bearing Steel In Rolling Contact Fatigue, Sina Mobasher Moghaddam Mar 2016

Analytical And Experimental Investigation Of Microstructural Alterations In Bearing Steel In Rolling Contact Fatigue, Sina Mobasher Moghaddam

Open Access Dissertations

Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry.

In the current work, an analytical as well as experimental approaches are used to investigate “butterfly wing” formation, crack initiation and propagation from inclusions. A new damage evolution equation coupled with a FE model is employed to account for the effect of mean stresses and alternating stresses simultaneously to investigate butterfly formation. The proposed …


Surface Modification Of Traditional And Bioresorbable Metallic Implant Materials For Improved Biocompatibility, Emily Kristine Walker Apr 2015

Surface Modification Of Traditional And Bioresorbable Metallic Implant Materials For Improved Biocompatibility, Emily Kristine Walker

Open Access Dissertations

Due to their strength, elasticity, and durability, a variety of metal alloys are commonly used in medical implants. Traditionally, corrosion-resistant metals have been preferred. These permanent materials can cause negative systemic and local tissue effects in the long-term. Permanent stenting can lead to late-stent thrombosis and in-stent restenosis. Metallic pins and screws for fracture fixation can corrode and fail, cause loss of bone mass, and contribute to inflammation and pain at the implant site, requiring reintervention. Corrodible metallic implants have the potential to prevent many of these complications by providing transient support to the affected tissue, dissolving at a rate …


Near-Congruent Solidification Of Castings, Kevin J Chaput Apr 2015

Near-Congruent Solidification Of Castings, Kevin J Chaput

Open Access Dissertations

A study on the microstructure development of as-cast Cu-Mn alloys based around the congruent minimum at 34.6 wt % Mn and 873 °C was performed. Initially, this was to evaluate the alloy as an alternative to wide freezing range Pb and Sn bronzes that are plagued with porosity. The shallow minimum and associated narrow freezing ranges around the congruent point result in a completely cellular (non-dendritic) solidification morphology for a composition range ~3 wt % Mn about the congruent composition (C c). The degree of cellular solidification was found to depend on the mold material. Increased mold conductivity lead …


Experimental And Modeling Investigation Of Cellulose Nanocrystals Polymer Composite Fibers, Si Chen Apr 2015

Experimental And Modeling Investigation Of Cellulose Nanocrystals Polymer Composite Fibers, Si Chen

Open Access Dissertations

Cellulose nanocrystals (CNCs) are a class of newly developed and sustainable nanomaterial derived from cellulose-based materials such as wood. There have been substantial research efforts to utilize these materials as reinforcing agents. However, in order to develop CNC nanocomposites with industrial applications, it is necessary to understand how addition of CNCs affect the properties of the polymer nanocomposite. In the present work, several approaches, experimental and theoretical, are presented in an effort to characterize and understand the effect of CNCs on the properties of polymer CNC fibers. ^ Two experimental methods were used to develop cellulose acetate (CA) and CNC …


Tunable Organization Of Cellulose Nanocrystals For Controlled Thermal And Optical Response, Jairo A. Diaz Amaya Apr 2015

Tunable Organization Of Cellulose Nanocrystals For Controlled Thermal And Optical Response, Jairo A. Diaz Amaya

Open Access Dissertations

The biorenewable nature of cellulose nanocrystals (CNCs) has opened up new opportunities for cost-effective, sustainable materials design. By taking advantage of their distinctive structural properties and self-assembly, promising applications have started to nurture the fields of flexible electronics, biomaterials, and nanocomposites. CNCs exhibit two fundamental characteristics: rod-like morphology (5-20 nm wide, 50-500 nm long), and lyotropic behavior (i.e., liquid crystalline mesophases formed in solvents), which offer unique opportunities for structural control and fine tuning of thermal and optical properties based on a proper understanding of their individual behavior and interactions at different length scales. In the present work, we attempt …


Experimental Constraints On Exotic Spin-Dependent Interactions Using Specialized Materials, Rakshya Khatiwada Apr 2015

Experimental Constraints On Exotic Spin-Dependent Interactions Using Specialized Materials, Rakshya Khatiwada

Open Access Dissertations

Various theories predict the possible existence of symmetry violating forces with mesoscopic range interactions from mm-m [1]. These forces can arise from the coupling of a spin 0 boson to spin 1/2 fermions through scalar (gs) and pseudoscalar (gp) couplings. We discuss two experiments that can investigate these interactions using nucleon rich, impressively low magnetic susceptibility (5-100 times lower than pure water) test masses and electron-spin rich, polarized test masses (spin density: 10^20 h/cm3 ). The first experiment looks for a P-odd, T-odd interaction potential proportional to (S.r) where S is the spin of one particle and r is the …


Transport Studies In Graphene-Based Materials And Structures, Jiuning Hu Apr 2015

Transport Studies In Graphene-Based Materials And Structures, Jiuning Hu

Open Access Dissertations

Graphene, a single atomic layer of graphite, has emerged as one of the most attractive materials in recent years for its many unique and excellent properties, inviting a broad area of fundamental studies and applications. In this thesis, we present some theoretical/experimental studies about the thermal, electronic and thermoelectric transport properties in graphene-based systems. We employ the molecular dynamic simulations to study the thermal transport in graphene nanoribbons (GNRs) exhibiting various properties, including chirality dependent thermal conductivity, thermal rectification in asymmetric GNRs, defects and isotopic engineering of the thermal conductivity and negative differential thermal conductance (NDTC) at large temperature biases. …


Unveiling The Mechanical Behavior Of The Rod-Like Microstructure In The Radular Teeth Of Cryptochiton Stelleri, Enrique Escobar De Obaldia Apr 2015

Unveiling The Mechanical Behavior Of The Rod-Like Microstructure In The Radular Teeth Of Cryptochiton Stelleri, Enrique Escobar De Obaldia

Open Access Dissertations

Natural ceramics provided with high volume fractions of mineralized materials that are surrounded by a weak organic interface combine the stiff mechanical behavior of building blocks, like hydroxyapatite or aragonite, and the compliance of the organic surroundings. Unique mechanical properties (e.g. light density and toughness) distinguish bio-composites from common engineering materials. A key example is the highly mineralized shell of the radular teeth of the Crypochiton stelleri. Nature has provided the radular teeth with a highly oriented rod-like microstructure of nano-scale dimensions embedded in a matrix of chitin sheaths. Compared to other biological materials, the external iron oxide layer of …


Sintering Techniques For Microstructure Control In Ceramics, Andrew T. Rosenberger Apr 2015

Sintering Techniques For Microstructure Control In Ceramics, Andrew T. Rosenberger

Open Access Dissertations

Sintering techniques can be manipulated to enhance densification in difficult to sinter materials and to produce property enhancing microstructures. However, the interplay between materials, sintering techniques, and end properties is not fully understood in many material systems, and some fundamental aspects of sintering such as the nature of the effects of electric fields remains unknown. The processing property relationships were examined in two classes of materials; zirconium diboride ultra high temperature ceramic composites, and all solid lithium-ion battery phosphate materials. ^ Investigation of zirconium diboride ceramics focused on the effects of zirconium carbide as a secondary or tertiary phase in …


Investigations Of Carbon Nanotube Catalyst Morphology And Behavior With Transmission Electron Microscopy, Sammy M. Saber Apr 2015

Investigations Of Carbon Nanotube Catalyst Morphology And Behavior With Transmission Electron Microscopy, Sammy M. Saber

Open Access Dissertations

Carbon nanotubes (CNTs) are materials with significant potential applications due to their desirable mechanical and electronic properties, which can both vary based on their structure. Electronic applications for CNTs are still few and not widely available, mainly due to the difficulty in the control of fabrication. Carbon nanotubes are grown in batches, but despite many years of research from their first discovery in 1991, there are still many unanswered questions regarding how to control the structure of CNTs. This work attempts to bridge some of the gap between question and answer by focusing on the catalyst particle used in common …


Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson Apr 2015

Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson

Open Access Dissertations

The unparalleled quality of GaAs/AlGaAs heterostructures grown by molecular beam epitaxy has enabled a wide range of experiments probing interaction effects in two-dimensional electron and hole gases. This dissertation presents work aimed at further understanding the key material-related issues currently limiting the quality of these 2D systems, particularly in relation to the fractional quantum Hall effect in the 2nd Landau level and spin-based implementations of quantum computation.^ The manuscript begins with a theoretical introduction to the quantum Hall effect which outlines the experimental conditions necessary to study the physics of interest and motivates the use of the semiconductor growth …


Encapsulation Of Chemical Catalyst And Structural Epoxy In Microcapsules Generated Via Microcapillary Devices, Congwang Ye Apr 2015

Encapsulation Of Chemical Catalyst And Structural Epoxy In Microcapsules Generated Via Microcapillary Devices, Congwang Ye

Open Access Dissertations

Protection and controlled release of chemicals through encapsulation have been extensively used in daily applications such as drug delivery, food processing, enzyme stabilization, and chemical storage. A significant need for further development in this area is to reduce the capsule size and to obtain more predictable performance by narrowing the capsule geometry distribution. For the past decade, microfluidics have been rapidly developed to become a popular technique for the generation of monodisperse single/double/multiple emulsion drops in the micrometer to millimeter size range. With this technique, polymeric microcapsules with a narrow size distribution can be fabricated by adding different polymer blends …


Kesterite Thin-Film Solar Cell Absorbers Derived Using Inhomogeneous Czts Nanoparticles, Wei-Chang D. Yang Jan 2015

Kesterite Thin-Film Solar Cell Absorbers Derived Using Inhomogeneous Czts Nanoparticles, Wei-Chang D. Yang

Open Access Dissertations

My doctoral research focuses on understanding the structure-property-processing relationship of the kesterite materials to improve their device performance. It is recognized in both my own work and the recent literature that the structural and compositional integrities of CZTSSe are crucial to derive the solar cell grade kesterite thin-films. Analytical electron microscopy (AEM) allows me to demonstrate the structural and compositional inhomogeneity of the CZTS nanoparticles and CZTSSe thin-films at the nanoscale. For example, the observed forbidden reflections in TED patterns and FFT diffractograms corresponding to HRTEM images indicate that cation disorder leads to stacking faults in CZTS nanoparticles. Probe-corrected STEM …


Characterization And Mechanical Properties Of Solar Grade Silicon In Granular And Nanopowder Form, Mohamad Bilal Zbib Jan 2015

Characterization And Mechanical Properties Of Solar Grade Silicon In Granular And Nanopowder Form, Mohamad Bilal Zbib

Open Access Dissertations

Polycrystalline silicon is mainly used for solar cell applications, structures in micro-electromechanical systems, and production of single crystal Si. One of the relatively new methods for producing large quantities of polysilicon is fluidized bed reactor (FBR), where two main morphologies are produced, granular solid (1-3 mm) and nanopowders (30-300 nm). Grinding and fracture occurs in the granular solid during shipping and handling which can affect the final product properties and create safety issues. The microstructure and the morphology of both the granular and the nanopowder forms of Si were examined using scanning and transmission electron microscopes (SEM and TEM). The …


Assessing Coupled Mechanical Behavior And Environmental Degradation At Submicron Scales, Samantha K Lawrence Jan 2015

Assessing Coupled Mechanical Behavior And Environmental Degradation At Submicron Scales, Samantha K Lawrence

Open Access Dissertations

Mechanical and electromechanical properties, deformation and fracture mechanisms, and environmental resistance of materials at submicron scales have been investigated through the combination of nanomechanical testing, high resolution microscopy, diffraction, and electrochemical testing. Nanomechanical techniques were used to isolate environmental, orientation, and size effects. Material evaluation focuses on metals, both model and engineering alloys, in bulk and thin-film form as well as oxide-substrate systems. Yield behavior of Ni 200, a model material, depends on sampled volume size, orientation, and surface preparation. Exposure to high-pressure hydrogen gas is also found to impact incipient plasticity and mechanical properties of commercially pure Ni 201. …


Nano-Modification For High Performance Cement Composites With Cellulose Nanocrystals And Carbon Nanotubes, Yizheng Cao Oct 2014

Nano-Modification For High Performance Cement Composites With Cellulose Nanocrystals And Carbon Nanotubes, Yizheng Cao

Open Access Dissertations

One of the new engineering frontiers is the exploration of infrastructure materials with novel combinations of properties that break traditional paradigms. The goal of this study is to utilize two different nano-fibers, cellulose nanocrystals (CNCs) and carbon nanotubes (CNTs) to modify the nanoscale structures of cement composites and thereby improve the performance at the macro-level. This study also evaluates the mechanism behind the modification, since fiber bridging, the most common reinforcing mechanism for fiber-reinforced composites, cannot be simply applied because CNCs are too short to bridge cracks in cement composites. ^ The mechanical tests show an increase in the flexural …


Effects Of Energetic Irradiation On Materials And Devices Based On Graphene And Topological Insulators, Isaac Childres Oct 2014

Effects Of Energetic Irradiation On Materials And Devices Based On Graphene And Topological Insulators, Isaac Childres

Open Access Dissertations

This report focuses on the optical and electronic properties of graphene and topological insulators and how these Dirac fermion systems interact with energetic irradiation. We first present data exploring the effects of electron-beam and oxygen plasma induced disorder on the electronic properties and Raman spectra of graphene. These initial investigations were important for relating Raman peak intensities and weak localization features to each other and to an average disorder length in graphene, LD. ^ We then integrate gate-effect measurements into the Raman spectroscopy study to fully explore the relationships between carrier density, disorder and Raman spectrum signatures. We …


Solid Oxide Fuel Cell Electrolytes Produced Via Very Low Pressure Suspension Plasma Spray And Electrophoretic Deposition, James D Fleetwood Oct 2014

Solid Oxide Fuel Cell Electrolytes Produced Via Very Low Pressure Suspension Plasma Spray And Electrophoretic Deposition, James D Fleetwood

Open Access Dissertations

Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y …


Ultrasound Assisted Low-Temperature Synthesis Of Tib2 And Al3ti Particulates In Molten Aluminum, Zhiwei Liu Oct 2014

Ultrasound Assisted Low-Temperature Synthesis Of Tib2 And Al3ti Particulates In Molten Aluminum, Zhiwei Liu

Open Access Dissertations

In situ formed TiB2 and Al3Ti are two typical representatives of ceramic and intermetallic reinforcements in the in situ particulate reinforced Al composites. TiB2 particulates can be synthesized in molten Al via the mixed-salts reaction by adding mixed K2TiF6 and KBF4 salts into the Al melt at high temperatures. Al3 Ti particulates can be produced by the direct-melt reaction between solid Ti powders and liquid Al at high temperatures. Generally, a high reaction temperature is always needed to obtain both reinforcements. Some issues, however, such as high cost and burning loss …