Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Materials Science and Engineering

University of Kentucky

Articles 1 - 30 of 137

Full-Text Articles in Engineering

The Characterization And Nanomechanical Properties Of Microstructurally Complex Systems, Kerry Ann Baker Jan 2024

The Characterization And Nanomechanical Properties Of Microstructurally Complex Systems, Kerry Ann Baker

Theses and Dissertations--Chemical and Materials Engineering

Since the dawn of civilization, the use of metals has played an integral role in the evolution of human society. Over the years, and with the introduction of new engineering and science, we have learned how to combine metals to create new metallic systems. We have expanded our understanding of dealloying and chemical reactions, and, in doing so, we created nanoporous metals. Our use of metals has evolved from basic alloys such as bronze and steel to more complex alloys such as multi-principal element alloys. Nanoporous gold is an advanced metallic system that can be created through the dealloying process. …


Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers Jan 2024

Thermomechanical Process Simulation And Quantification Of Nanoscale Precipitation Influencing Ductility And Strength During Alloy Processing, Alyssa Stubbers

Theses and Dissertations--Chemical and Materials Engineering

Experimental process simulation and quantification of microstructure development during processing are challenging due to limitations with machinery temperature capability, inadequate resolution and sampling volume of currently available characterization techniques, and difficulty characterizing material microstructures as close to processing-relevant conditions as possible. This dissertation addresses how process simulation can be performed using Gleeble thermomechanical technologies and how microstructure development during these processing simulations can be quantified both in-situ and ex-situ.

The first portion of this dissertation demonstrates how Gleeble technologies can be applied to simulate complex material processing conditions in order to produce process-property profiles that can be used to inform …


Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica Jan 2023

Surface Properties, Work Function, And Thermionic Electron Emission Characterization Of Materials For Next-Generation Dispenser Cathodes, Antonio Mantica

Theses and Dissertations--Chemical and Materials Engineering

A dispenser cathode’s ability to thermionically emit electrons is highly dependent on its material properties, especially those of the surface. Understanding the relationship between surface properties and electron emission, therefore, is vital to reach the next generation of the many vacuum electron devices (VEDs) that rely on the physics of electron emission. In the past century, many techniques have been developed to characterize material surfaces and quantify thermionic emission. These techniques are based on a wide range of different physical phenomena, including measuring photoemission via the photoelectric effect, measuring the electrostatic potential between metals in electrical contact, and current collection …


Advanced Microstructural Characterization Of Functionally Graded Dental Ceramic Material For Materials-Informed Finishing, Angani Vigneswaran Jan 2023

Advanced Microstructural Characterization Of Functionally Graded Dental Ceramic Material For Materials-Informed Finishing, Angani Vigneswaran

Theses and Dissertations--Manufacturing Systems Engineering

Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has gained popularity as the choice of material for dental prosthetics. Ivoclar Vivadent’s IPS e.max ZirCAD Prime dental ceramic incorporates a unique gradient technology that varies the yttria content over the thickness of the material. The top layer is composed of 5Y-TZP which is desired for its optical properties while the bottom layer is composed of a much stronger 3Y-TZP. In between the two layers, 5Y-TZP and 3Y-TZP are mixed to form a transition layer. Varying the amount of yttria allows for more esthetically pleasing translucency in the visible areas of the restoration without compromising …


Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai Jan 2023

Drop Wetting And Sliding On Soft, Swollen Elastomers, Zhuoyun Cai

Theses and Dissertations--Chemical and Materials Engineering

Soft, slippery surfaces have gained increasing attention due to their wide range of potential applications, for example in self-cleaning, anti-fouling, liquid collection, and more. One design approach in creating slippery surfaces is using a swollen elastomer, which is a polymer network swollen with a lubricant. This type of surface may be beneficial for longer-term use than standard lubricant-infused surfaces, and provides a versatile surface with tunable mechanical properties. Hence, understanding the physics of soft surface interactions is important for fundamental soft matter physics, biomaterials, adhesives, and coatings. This research experimentally investigates wetting on soft infused networks, with the aim of …


Effects Of Confinement On Ionic Liquids And Deep Eutectic Solvents For The Design Of Catalytic Systems, Electrochemical Devices, And Separations, Andrew Drake Jan 2023

Effects Of Confinement On Ionic Liquids And Deep Eutectic Solvents For The Design Of Catalytic Systems, Electrochemical Devices, And Separations, Andrew Drake

Theses and Dissertations--Chemical and Materials Engineering

Confinement of ionic liquids (ILs) and deep eutectic solvents (DESs) within mesoporous materials such as silica helps to control the local environment within the pores for applications such as catalysis, electrochemistry, and absorption. Silica thin films with 2.5 and 8 nm pores and micron-sized silica particles with pore diameters of 5.4 and 9 nm were synthesized to study the effect of nanoconfinement on ILs 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]), and DESs reline and ethaline (choline chloride and urea or ethylene glycol). Silica thin films with vertically aligned, well ordered, and accessible pores were synthesized via the evaporation-induced …


An Electrochemical-Mechanical Investigation Of Next Generation Lithium Metal Electrode And Solid Electrolyte, Andrew Meyer Jan 2022

An Electrochemical-Mechanical Investigation Of Next Generation Lithium Metal Electrode And Solid Electrolyte, Andrew Meyer

Theses and Dissertations--Chemical and Materials Engineering

Lithium-ion batteries (LIBs) are a staple in today’s society. From our cellphones, laptops, power tools, the ever-growing electric vehicle, and many more application, LIBs are more important to us than most realize. They provide the best combination of both high-energy and high-power density compared to other battery types such as Ni-Cd, Ni-MH, or the lead acid batteries used in our cars. Plus, LIBs are much safer. However, as new technologies grow and are developed, the demand for higher energy and power density, better safety, lower costs, and longer life increases. One way to achieve the ever-increasing demands is to replace …


A Computational Exploration Of The Scandate Cathode Surface, Shankar Miller-Murthy Jan 2022

A Computational Exploration Of The Scandate Cathode Surface, Shankar Miller-Murthy

Theses and Dissertations--Chemical and Materials Engineering

The exact surface configuration of scandate cathodes has been a point of contention for the materials community for a long time. Without proper understanding of it and the related structures and emission mechanisms, scandate cathodes remain patchy and unreliable emitters. Thus, density functional theory techniques were applied to various potential surface arrangements and found that there are several low-energy surfaces with low work functions that incorporate a scandium interlayer between tungsten and oxygen or otherwise have a scandium-on-tungsten structure. Furthermore, it was discovered that adding a monolayer of scandium directly to a tungsten surface is surprisingly favorable, thermodynamically. While none …


Pitch-Based Carbon Fiber Derived From Coal Extract Liquids, Cierra Danielle Crowe Jan 2022

Pitch-Based Carbon Fiber Derived From Coal Extract Liquids, Cierra Danielle Crowe

Theses and Dissertations--Chemical and Materials Engineering

Limited coal coking operations and the use of coal-tar pitch as a binding agent in the production of metallurgical anodes has led to a limited availability of coal tar pitch for carbon fiber products. This has sparked interest in utilizing non-metallurgical coal-based liquids as an alternative to traditional coal tar from metcoke operations. This can be achieved by low severity solvent extraction, with heavy aromatic solvents, to produce coal liquids that act as precursor to pitch-based carbon fiber. This thesis aims to establish the processing and determine the impact of utilizing coal liquids to produce carbon fiber. In this work …


Green-Route Synthesis Of Halide Perovskite Materials And Their Optoelectronic Properties, Xiaobing Tang Jan 2022

Green-Route Synthesis Of Halide Perovskite Materials And Their Optoelectronic Properties, Xiaobing Tang

Theses and Dissertations--Chemical and Materials Engineering

Colloidal semiconductor quantum dots (QDs), also called as nanocrystals (NCs), are a class of functional materials with extraordinary properties, which are different from their bulk counterparts and benefit from their exclusive quantum confinement (size) effect. Semiconductor exhibits the quantum confinement effect when the characteristic size of the semiconductor is comparable to or smaller than the de Broglie wavelength of the electron wave function and/or the exciton Bohr diameter of the bulk semiconductor. In recent years, metal halide perovskite NCs, as next-generation semiconductor materials for lighting and display, have aroused a wide attention due to their excellent optoelectronic properties. However, traditional …


Derivation, Exploration And Evaluation Of Non-Equiatomic High Entropy Alloys, Artashes Ter-Isahakyan Jan 2022

Derivation, Exploration And Evaluation Of Non-Equiatomic High Entropy Alloys, Artashes Ter-Isahakyan

Theses and Dissertations--Chemical and Materials Engineering

High-entropy alloys (HEAs) are a class of multicomponent alloys based on an innovative alloying strategy that employs multi-principle elements in relatively high concentrations. Commonly defined as alloys that contain at least five principal elements, each with a concentration between 5 and 35 at %. The term entropy refers to the excess configurational entropy associated with HEAs, which is thought to facilitate the formation of solid solutions. The design strategy results in vast compositional space for exploration and innovative potential triggering a renaissance in physical metallurgy. These alloys may have favorable properties compared to conventional dilute solid solutions, but their preeminent …


Laptop Recycling Case Study: Estimating The Contained Value And Value Recovery Process Feasibility Of End-Of-Life Consumer Electronics, Zebulon Hart Jan 2022

Laptop Recycling Case Study: Estimating The Contained Value And Value Recovery Process Feasibility Of End-Of-Life Consumer Electronics, Zebulon Hart

Theses and Dissertations--Mining Engineering

Work has been done to establish, through the development and use of novel assay techniques and analysis metrics, the contained value of a sampling of laptop computers (as an analog for myriad e-waste sources). This work has conceptualized e-waste as an alternative to geologic-origin complex metallic ores and has likewise evaluated the feasibility of value recovery from e-waste sources in a similar manner to an ore. The application of conventional and novel mineral separation techniques to e-waste recycling processes has been evaluated and positive results are demonstrated. Further, this work has demonstrated the ability to identify the presence of base …


Microscale Contact And Friction Of Low Modulus, Lightly Crosslinked Polydimethylsiloxane, Justin Glover Jan 2022

Microscale Contact And Friction Of Low Modulus, Lightly Crosslinked Polydimethylsiloxane, Justin Glover

Theses and Dissertations--Chemical and Materials Engineering

Friction and adhesion of soft materials are important for pressure sensitive adhesives, biomaterials, and soft robotics; however, the behavior on the microscale is not fully understood. When two objects come into contact, their interactions are usually mediated by small contact points due to surface roughness. At the microscale size, surface forces can deform soft materials to minimize energy by increasing the contact area, which is balanced by the elastic deformation of the polymer network. However, for soft, crosslinked materials with a modulus below ~100 kPa, it is challenging to predict the behavior with prior contact and friction models. Additionally, lightly …


Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E. Jan 2021

Tailoring Texture, Microstructure, And Shape Memory Behavior Of Niti Alloys Fabricated By L-Pbf-Am, Sayed Ehsan Saghaian N.E.

Theses and Dissertations--Mechanical Engineering

Laser Powder Bed Fusion (L-PBF) is one of the most promising Additive Manufacturing (AM) methods to fabricate near net-shape metallic materials for a wide range of applications such as patient-specific medical devices, functionally graded materials, and complex structures. NiTi shape memory alloys (SMAs) are of great interest due to a combination of unique features, such as superelasticity, shape memory effect, high ductility, work output, corrosion resistance, and biocompatibility that could be employed in many applications in automotive, aerospace, and biomedical industries. Due to the difficulties with traditional machining and forming of NiTi components, the ability to fabricate complex parts, tailor …


Tailoring Thermoresponsive Poly(N-Isopropylacrylamide) Toward Sensing Perfluoroalkyl Acids, Dustin Thomas Savage Jan 2021

Tailoring Thermoresponsive Poly(N-Isopropylacrylamide) Toward Sensing Perfluoroalkyl Acids, Dustin Thomas Savage

Theses and Dissertations--Chemical and Materials Engineering

Widespread distribution of poly- and perfluoroalkyl substances (PFAS) in the environment combined with concerns for their potentially negative health effects has motivated regulators to establish strict standards for their surveillance. The United States Environmental Protection Agency issued a cumulative domestic threshold of 70 ppt for water supplies, and this bar is even lower in some local districts and other countries. Monitoring PFAS consequently requires sensitive analytical equipment to meet regulatory specifications, and liquid chromatography with tandem mass spectroscopy (LC/MS/MS) is the most common technique used to satisfy these requirements. Though extremely sensitive, the instrument is often burdened by pretreatment regimens, …


Fabrication Of Nanoporous Materials For Applications Under Extreme Environments, Maria Kosmidou Jan 2021

Fabrication Of Nanoporous Materials For Applications Under Extreme Environments, Maria Kosmidou

Theses and Dissertations--Chemical and Materials Engineering

The study of nanoporous materials has become a key aspect of nanotechnology due to their high surface-area-to-volume ratio, arising from the small size ligaments and pores that form the structure. Sensing, catalysis, micro-electromechanical systems (MEMS), medical applications, and materials for radiation environments are some of the applications for which nanoporous materials are considered great candidates. This work, performed at the Ion Beam Laboratory (IBL) at Sandia National Laboratories (SNL), examines the effect of heavy and light ion irradiation exposure on nanoporous Au. Radiation damage accumulation is observed with real-time recording of the creation, migration, and removal of the radiation-induced defects …


Electrochemical Performance Of Biomass-Derived Activated Carbon Supercapacitor Under Compression, Yulin Zhang Jan 2021

Electrochemical Performance Of Biomass-Derived Activated Carbon Supercapacitor Under Compression, Yulin Zhang

Theses and Dissertations--Chemical and Materials Engineering

Supercapacitors are important energy storage device of high-power density, fast charge/discharge rate, environmental friendliness and long service life. Currently, flexible supercapacitors have attracted widespread interest in academia and industry. Supercapacitors under the action of external force will inevitably cause structural changes, performance degradation and even loss of energy storage and supply functionalities. As the most abundant renewable resource so far, biomass is an important energy source for human survival and development. Most electrode materials for supercapacitors are porous activated carbons, which can be derived from abundant renewable biomass, contributing to the sustainable development of society and environmental protection. This thesis …


Modeling Of Rare Earth Solvent Extraction Process For Flowsheet Design And Optimization, Vaibhav Kumar Srivastava Jan 2021

Modeling Of Rare Earth Solvent Extraction Process For Flowsheet Design And Optimization, Vaibhav Kumar Srivastava

Theses and Dissertations--Mining Engineering

The separation and purification of rare earth elements (REEs) into individual products has been a topic of significant interest for researchers and engineers for many decades. The prime reason for such sustained interest is due to REEs’ demand and application in modern technology, as well as the challenges associated with their separation and purification. The chemical similarity of rare earth group elements is responsible for difficult separability which makes purification of individual elements challenging. Despite associated complications, processes such as solvent extraction (SX) and ion-exchange have been successfully utilized in the separation and production of REEs on pilot and commercial …


Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan Jan 2021

Viscoelasticity Of Ptfe-Based Face Seals, Bo Tan

Theses and Dissertations--Mechanical Engineering

PTFE-based materials are widely used in areas of tribology, particularly in seal and bearing applications because of their outstanding self-lubricating properties. Often in dynamic seal applications there is a need for ultra-low mechanical friction loss between the sealing surfaces. Due to its extremely low friction coefficient, there is interest in employing Polytetrafluoroethylene (PTFE) materials in such applications. One challenging aspect of employing PTFE is that these materials are viscoelastic and plastic. This dissertation concentrates on the modeling of viscoelastic material response when used as mechanical face seals with a focus on PTFE-based materials. First, the viscoelastic characteristics are measured through …


The Development Of Structural Hollow Carbon Fibers From A Multifilament Segmented Arc Spinneret: Precursors, Oxidation, And Carbonization, Elizabeth Ashley Morris Jan 2021

The Development Of Structural Hollow Carbon Fibers From A Multifilament Segmented Arc Spinneret: Precursors, Oxidation, And Carbonization, Elizabeth Ashley Morris

Theses and Dissertations--Chemical and Materials Engineering

Carbon fiber is an ideal material for structural applications requiring high strength and stiffness and low weight. Yet it has seen only incremental improvements in properties over the last few decades. Carbon fibers remain limited in attaining their theoretical tensile strength and modulus, largely due to defects in their structure, some of which stem from the fiber production process itself. Through the mitigation of defect formation as well as approaches to decrease fiber linear density, it is hypothesized that carbon fiber with enhanced specific properties, including specific strength and modulus, could be produced which would significantly propel its unique capabilities. …


Stress Generation In Ni50.3Ti29.7Hf20 Shape Memory Alloys, Utsav Shah Jan 2020

Stress Generation In Ni50.3Ti29.7Hf20 Shape Memory Alloys, Utsav Shah

Theses and Dissertations--Mechanical Engineering

Shape memory alloys such as NiTiHf and NiTi have the ability to generate large recovery stresses when they are constrained after pre-straining and then heated above their Austenite Finish Temperature (Af). In this work Ni49.9Ti50.1 (at.%), the most well-known SMA with impressive shape memory properties but limited temperature range and Ni50.3Ti29.7Hf20, a promising high temperature shape memory alloy, were characterized to reveal their stress generation capabilities. The effects of pre-straining on stress generation were investigated via martensite reorientation method of NiTi and NiTiHf alloys by loading the samples till …


Electrophoresis In Heterogeneous Hydrogels And Applications In Surface Patterning, Ning Ge Jan 2020

Electrophoresis In Heterogeneous Hydrogels And Applications In Surface Patterning, Ning Ge

Theses and Dissertations--Mechanical Engineering

The creation of chemical micropatterns on surfaces makes it possible to add unique chemical functionality to surfaces, modifying properties such as wettability, or even adding the ability to selectively bind other molecules. The creation of biochemical surface patterning in particular is useful in a variety of fields including tissue engineering and highthroughput drug screening. There are many existing surface patterning techniques which focus on precise control over the patterned geometry, even down to submicron scale features, but they do not allow local control over chemical concentration. So the results are high resolution patterns with binary concentration. There are also existing …


Capillary Flow Of Liquid Aluminum Alloy In Wetting And Wetting/Non-Wetting Systems, Yangyang Wu Jan 2020

Capillary Flow Of Liquid Aluminum Alloy In Wetting And Wetting/Non-Wetting Systems, Yangyang Wu

Theses and Dissertations--Mechanical Engineering

In this dissertation, the capillary flow of liquid aluminum alloy in both wetting and wetting/non-wetting systems is investigated.

The impact of gravity and surface topography on the capillary flow has been studied in a wetting/non-wetting assembly (an AA3003/Al2O3 wedge-tee configuration). The research includes (i) kinetics of liquid Al-Si-KxAlyFz alloy triple line movements and dynamic macro advancing and receding contact angles and (ii) free surface profiles of the molten alloy driven by surface tension and impacted by gravity. A trade-off between the surface tension and gravity force has been found by calculating the …


A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi Jan 2020

A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi

Theses and Dissertations--Physics and Astronomy

Applications of organic electronics have increased significantly over the past two decades. Organic semiconductors (OSC) can be used in mechanically flexible devices with potentially lower cost of fabrication than their inorganic counterparts, yet in many cases organic semiconductor-based devices suffer from lower performance and stability. Investigating the doping mechanism, charge transport, and charge transfer in such materials will allow us to address the parameters that limit performance and potentially resolve them. In this dissertation, organic materials are used in three different device structures to investigate charge transport and charge transfer. Chemically doped π-conjugated polymers are promising materials to be used …


Understanding And Mitigating The Electrochemical-Mechanical Degradation Of High Capacity Battery Electrodes, Dingying Dang Jan 2020

Understanding And Mitigating The Electrochemical-Mechanical Degradation Of High Capacity Battery Electrodes, Dingying Dang

Theses and Dissertations--Chemical and Materials Engineering

Lithium-ion batteries (LIBs) with high energy density and cycling stability play a critical role in developing electric vehicle (EV) and grid energy storage techniques. The electrochemical performance of LIBs can be improved by using high capacity positive (e.g., LiNi1/3Mn1/3Co1/3O2, i.e., NMC111) and negative (e.g., silicon) electrodes; both, however, experience severe electrochemical-mechanical degradation caused by the lithiation/delithiation induced volume changes. Understanding mechanical degradation mechanisms and their relationships with the capacity fading of electrodes is important for improving the cycling stability of electrodes as well as optimizing the design of electrodes with high capacity …


Interfaces In Lead-Free Tin Perovskite Photovoltaics: An Investigation Of Energetics, Ion Mobility, Surface Modification, And Performance, Alex Boehm Jan 2020

Interfaces In Lead-Free Tin Perovskite Photovoltaics: An Investigation Of Energetics, Ion Mobility, Surface Modification, And Performance, Alex Boehm

Theses and Dissertations--Chemistry

Halide perovskites have generated tremendous interest as low-cost semiconductors for optoelectronics, such as photovoltaics, lasers, and light emitting diodes due to their extraordinary optical and transport properties. Perovskite photovoltaics in particular have demonstrated a meteoric rise in power conversion efficiencies and drawn considerable interest as a next-generation solar energy technology. The rapid development has centered around lead-based derivatives, and concerns regarding the toxicity of lead has sparked interest in low toxicity and more environmentally friendly perovskite derivatives. In this regime tin (Sn) is regarded as a prominent alternative owing to the ideal bandgap and reduced toxicity exhibited by Sn-halide perovskites. …


Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt Jan 2020

Carbon Oxidation At The Atomic Level: A Computational Study On Oxidative Graphene Etching And Pitting Of Graphitic Carbon Surfaces, Simon Schmitt

Theses and Dissertations--Mechanical Engineering

In order to understand the oxidation of solid carbon materials by oxygen-containing gases, carbon oxidation has to be studied on the atomic level where the surface reactions occur. Graphene and graphite are etched by oxygen to form characteristic pits that are scattered across the material surface, and pitting in turn leads to microstructural changes that determine the macroscopic oxidation behavior. While this is a well-documented phenomenon, it is heretofore poorly understood due to the notorious difficulty of experiments and a lack of comprehensive computational studies. The main objective of the present work is the development of a computational framework from …


Fabrication, Characterization And Applications Of Highly Conductive Wet-Spun Pedot:Pss Fibers, Ruben Sarabia Riquelme Jan 2020

Fabrication, Characterization And Applications Of Highly Conductive Wet-Spun Pedot:Pss Fibers, Ruben Sarabia Riquelme

Theses and Dissertations--Chemical and Materials Engineering

Smart electronic textiles cross conventional uses to include functionalities such as light emission, health monitoring, climate control, sensing, storage and conversion of energy, etc. New fibers and yarns that are electrically conductive and mechanically robust are needed as fundamental building blocks for these next generation textiles.

Conjugated polymers are promising candidates in the field of electronic textiles because they are made of earth-abundant, inexpensive elements, have good mechanical properties and flexibility, and can be processed using low-cost large-scale solution processing methods. Currently, the main method to fabricate electrically conductive fibers or yarns from conjugated polymers is the deposition of the …


Ab Initio Investigation On The Surface Chemistry Of Functionalized Titania Membranes, Evan Hyde Jan 2020

Ab Initio Investigation On The Surface Chemistry Of Functionalized Titania Membranes, Evan Hyde

Theses and Dissertations--Chemical and Materials Engineering

Titania (titanium dioxide) is a metal oxide which has recently been investigated as a photocatalyst, most commonly for use in hydrolysis, which absorbs mostly in the UV range. However, the range of absorption can be shifted to fall within the visible light range either by doping or by functionalizing the surface with atomic or molecular adsorbates. Over the course of this research, a series of Density Functional Theory (DFT) calculations are performed to ascertain the effects of these different methods on the photocatalytic performance of titania. While the effects of nitrogen doping and oxygen vacancies are well known, more recent …