Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

An Investigation Into Magnetic Gears And Magnetic Springs For Marine Hydrokinetic Power Generators, Hossein Baninajar Apr 2022

An Investigation Into Magnetic Gears And Magnetic Springs For Marine Hydrokinetic Power Generators, Hossein Baninajar

Dissertations and Theses

Marine hydrokinetic generators often use mechanical gears to convert the low-speed motion into the high-speed rotary motion that is required for conventional electrical generators. While mechanical gearboxes have a high torque density and can reach high efficiencies, they suffer from serious reliability issues. Recently, magnetic gearing technology has been proposed as a means of making hydrokinetic generators more reliable. As magnetic gears use magnetic field modulation to create speed change, they offer a high reliability, nonfriction, power transmission mechanism that limits the wear to only the bearings and makes the magnetic gears almost maintenance-free. During an over-torque condition, a magnetic …


Wave Engineering In Time Modulated, Nonlinear, And Anisotropic Metamaterials, Ahmed Mekawy Jan 2022

Wave Engineering In Time Modulated, Nonlinear, And Anisotropic Metamaterials, Ahmed Mekawy

Dissertations and Theses

Leveraging wave matter interactions is central to a myriad of electromagnetic wave-based applications. During the past decades, research on extreme wave manipulation has been revolutionized by artificially engineered materials (metamaterials) and by adding new aspects to the wave-matter interactions that showed intriguing results inaccessible in conventional linear, time invariant (LTI), passive and isotropic media. In this work, I will explore, numerically and experimentally, the possibility of realizing devices that perform beyond or close to their fundamental LTI limitations by adding periodic modulation, nonlinearity, and gain. I will demonstrate these concepts at radio frequencies (RF) and at optical frequencies. Specifically, at …


Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer Jan 2022

Nonlinear Light - Matter Interactions Of Ultrafast High Intensity Laser Pulses, Henry Meyer

Dissertations and Theses

This thesis focuses on the key nonlinear optical effects that arise from the interactions of intense ultrafast laser pulses with various states of matter. These interactions involve electronic and molecular states and yield new information on the underlying fundamental processes that govern the molecular world. Modern day lasers offer ultrashort pulses, high intensities, and complex polarizations and wavefronts. These extreme conditions have profound effect on the optical properties and behaviors of electronic and molecular states within a material. The changes in these mechanisms effect generation of nonlinear optics, such supercontinuum (SC), stimulated Raman (SRS), self-focusing and filamentation, conical emission (CE), …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Innovative Applications Of Laser Remote Sensing Of Gases, Aerosols And Wind, Adrian Diaz Fortich Jan 2020

Innovative Applications Of Laser Remote Sensing Of Gases, Aerosols And Wind, Adrian Diaz Fortich

Dissertations and Theses

Over the years, a major component of the research carried out at the Optical Remote Sensing Laboratory of the City College of New York has been on active sensing technologies and their different applications in atmospheric studies. This thesis builds upon and looks to further advance this field by demonstrating innovative applications of laser remote sensing technologies for studies involving trace gases, aerosol particles and wind; which are key components of the Earth’s atmosphere. First, we present the demonstration of gas concentration measurements using a quantum cascade laser open path system with characteristics that make it promising for mobile and/or …


Design And Performance Evaluation Of Linear And Axial-Flux Magnetic Gears, Mojtaba Bahrami Kouhshahi Apr 2019

Design And Performance Evaluation Of Linear And Axial-Flux Magnetic Gears, Mojtaba Bahrami Kouhshahi

Dissertations and Theses

The conversion from low speed to high speed and vice versa in various forms, including rotary and linear motion, is a requirement for a wide range of applications. For example, wind power generation requires a conversion of low speed rotation of turbine blades to high speed generator rotation, and ocean wave power generation is achievable by conversion of low speed linear motion to either high speed rotation or high speed linear motion. Mechanical gearboxes, hydraulic and pneumatic actuators are commonly used to achieve these conversions. However, these systems suffer from reliability issues, high maintenance requirements, noise, and lack of overload …


Understanding Adversarial Training: Improve Image Recognition Accuracy Of Convolution Neural Network, Naoki Ishibashi Jan 2017

Understanding Adversarial Training: Improve Image Recognition Accuracy Of Convolution Neural Network, Naoki Ishibashi

Dissertations and Theses

Traditional methods of computer vision and machine learning cannot match human performance on tasks such as the recognition of handwritten digits. Recently many researchers work on Convolution Neural Network for image recognition, and get results as good as human being. Additionally, Image recognition task is getting more popular and high demand to apply to other fields, but also there are still many problems to utilize in everyday life. One of these problems is that several machine learning models, including neural networks, consistently misclassify adversarial examples—inputs formed by applying small but intentionally worst-case perturbations to examples from the dataset, such that …


Physics-Based Imaging Methods For Terahertz Nondestructive Evaluation Applications, Gabriel Paul Kniffin May 2016

Physics-Based Imaging Methods For Terahertz Nondestructive Evaluation Applications, Gabriel Paul Kniffin

Dissertations and Theses

Lying between the microwave and far infrared (IR) regions, the "terahertz gap" is a relatively unexplored frequency band in the electromagnetic spectrum that exhibits a unique combination of properties from its neighbors. Like in IR, many materials have characteristic absorption spectra in the terahertz (THz) band, facilitating the spectroscopic "fingerprinting" of compounds such as drugs and explosives. In addition, non-polar dielectric materials such as clothing, paper, and plastic are transparent to THz, just as they are to microwaves and millimeter waves. These factors, combined with sub-millimeter wavelengths and non-ionizing energy levels, makes sensing in the THz band uniquely suited for …


Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano Oct 2013

Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano

Dissertations and Theses

The kinematics and dynamics for plane wave optics are derived for a massive electrodynamic field by utilizing Proca's theory. Atomic spectroscopy is also examined, with the focus on the 21 cm radiation due to the hyperfine structure of hydrogen. The modifications to Snell's Law, the Fresnel formulas, and the 21 cm radiation are shown to reduce to the familiar expressions in the limit of zero photon mass.


3-D Terahertz Synthetic-Aperture Imaging And Spectroscopy, Samuel C. Henry Feb 2013

3-D Terahertz Synthetic-Aperture Imaging And Spectroscopy, Samuel C. Henry

Dissertations and Theses

Terahertz (THz) wavelengths have attracted recent interest in multiple disciplines within engineering and science. Situated between the infrared and the microwave region of the electromagnetic spectrum, THz energy can propagate through non-polar materials such as clothing or packaging layers. Moreover, many chemical compounds, including explosives and many drugs, reveal strong absorption signatures in the THz range. For these reasons, THz wavelengths have great potential for non-destructive evaluation and explosive detection. Three-dimensional (3-D) reflection imaging with considerable depth resolution is also possible using pulsed THz systems. While THz imaging (especially 3-D) systems typically operate in transmission mode, reflection offers the most …


A Lagrangian For A System Of Two Dyons, Rainer Georg Thierauf Jan 1988

A Lagrangian For A System Of Two Dyons, Rainer Georg Thierauf

Dissertations and Theses

Maxwell's equations for the electromagnetic field are symmetrized by introducing magnetic charges into the formalism of electrodynamics. The symmetrized equations are solved for the fields and potentials of point particles. Those potentials, some of which are found to be singular along a line, are used to formulate the Lagrangian for a system of two dyons (particles with both electric and magnetic charge). The equations of motion are derived from the Lagrangian. It is shown that the dimensionality constants k and k * , which we r e introduced to define the units of the electromagnetic fields, have to be equal …


Effects On Electrolytic Cells Of Magnetic Fields Applied To Single Electrodes, Craig Allen Cousins Oct 1982

Effects On Electrolytic Cells Of Magnetic Fields Applied To Single Electrodes, Craig Allen Cousins

Dissertations and Theses

The primary goal of this research was to investigate the effects associated with the application of magnetic fields to single electrodes.