Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biomedical Engineering and Bioengineering

Nanoparticles

Institution
Publication Year
Publication

Articles 1 - 30 of 47

Full-Text Articles in Engineering

Surface-Functionalized Silica Nanocarriers For Mitigating Water Stress In Wheat And Benefiting The Root Microbiome, Anthony Cartwright Aug 2023

Surface-Functionalized Silica Nanocarriers For Mitigating Water Stress In Wheat And Benefiting The Root Microbiome, Anthony Cartwright

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Changes in climate and shifting patterns of drought threaten the growth of important cash crops like wheat. The element silicon serves as a plant nutrient and shows promise for strengthening wheat against drought while remaining safe to both the crop and the positive bacteria that grow on its roots. Silicon can be added to wheat in the form of silicon-dioxide nanoparticles featuring protective coatings made from plant-beneficial nutrients. These nanoparticles can be engineered with high surface area or porous structures allowing them to be loaded with additional nutrients that can be delivered to crops. In a laboratory setting, such nanoparticles …


Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas Allen May 2023

Tumor Targeting Gold Nanoparticles For Delivery Of Rna And Dna Oligonucleotide Therapies For Glioblastoma., Nicholas Allen

Electronic Theses and Dissertations

Glioblastoma (GBM) brain tumors are highly aggressive gliomas due to genetic and cellular heterogeneity. Current GBM treatment consists of surgical resection of the tumor combined with radio- or chemo-therapies. While these treatments have increased the life expectancy for GBM patients up to 20 months, they have had little effect on the 5-year survival rate. The complex cellular and genetic composition of the tumor makes current treatments less effective long term. One approach to developing more effective GBM treatments is to customize nanoparticle-based drug delivery systems that can directly target the aberrant gene expression patterns within a particular GBM tumor. Delivery …


Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna Apr 2023

Computational Design Of Fiber-Optic Probes For Biosensing, Suwarna Karna

Electrical Engineering Theses

This thesis presents a study on the optical characteristics of hollow-core photonic crystal fibers (HC-PCFs) with a band gap cladding structure and their applications in optical fiber sensing. This 800B HC-PCF exhibited excellent optical properties and has a flexible structure, which makes them suitable for a wide range of industrial applications. Finite element simulations and structural optimization designs were conducted using the surface plasmon resonance (SPR) technique to determine the optimal performance parameters of the 800B HC-PCF. The fiber was further modified using the SPR technique to improve its practical detection capabilities. The performance of the modified fiber was observed …


Polyethyleneimine Shell Nucleic Acid Nanostructures From Gold Nanoparticle Template For Chemotherapeutic Drug Delivery, Brendan Guy Rucci Jan 2023

Polyethyleneimine Shell Nucleic Acid Nanostructures From Gold Nanoparticle Template For Chemotherapeutic Drug Delivery, Brendan Guy Rucci

Theses and Dissertations

The next generation of anticancer agents will emerge from rationally designed nanostructured materials. This work involved the synthesis and characterization of novel hollow DNA-conjugated gold nanoparticles (DNA-AuNPs) for controlled drug delivery. Polyethyleneimine (PEI) was bound to citrate-capped AuNPs, forming polymer-shell nanoparticles. Dissolution of the gold core via iodine formed hollow core polymeric nanoparticles (HCPPs) and a high density of DNA (85 molecules/particle) containing daunorubicin was conjugated. Particles were spherical with an average diameter of 105.7±17.3 nm and zeta potential of 20.4±3.54 mV. We hypothesize the DNA backbone electrostatically condensed to the primary amines on the surface of the particle toroidally, …


The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling Jan 2023

The Wound Healing And Antibacterial Properties Of Mesenchymal Stromal Cell Extracellular Matrix Nanoparticles, Emily N. Wandling

Theses and Dissertations

Treatments for acute respiratory distress syndrome (ARDS) are still unavailable and the prevalence of the disease has only increased due to the Covid-19 pandemic. Mechanical ventilation regiments are still utilized to support declining lung function, but they also contribute to lung damage and increase the risk of bacterial infection. The anti-inflammatory and pro-regenerative abilities of mesenchymal stromal cells (MSCs) have shown to be a promising therapy for ARDS. We propose to utilize the regenerative effects of MSC secretome and the extracellular matrix (ECM) into a nanoparticle. Our mouse MSC (MMSC) ECM nanoparticles were characterized using size, zeta-potential, and mass spectrometry …


Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley Jun 2022

Biomimetic Strategies To Control Therapeutic Release From Novel Dna Nanoparticles, Robert J. Mosley

Theses and Dissertations

The inherent chemical, mechanical, and structural properties of nucleic acids make them ideal candidates for the formulation of tunable, personalized drug nanocarriers. However, none so far have exploited these properties for the controlled release of therapeutic drugs. In this dissertation, a biomimetic approach to controlling drug release is exhibited by specifically manipulating the architecture of novel, DNA nanoparticles to take advantage of drug binding mechanisms of action. Rationally designed DNA strands were immobilized on gold surfaces via a terminal thiol modification. Immobilized monomers can be manipulated to form distinct monolayer architectures including flat, folded, coiled, or stretched structures. Increasing the …


Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez Jan 2021

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez

LSU Doctoral Dissertations

This research examined the effect of biodegradable, polymeric, lignin-based nanoparticles (LNPs, 113.8±3.4, negatively charged) and zein nanoparticles (ZNP, 141.6±3.9, positively charged) on soybean plant health. The LNPs were synthesized from lignin, covalently linked to poly(lactic-co-glycolic) acid by emulsion evaporation. ZNPs were synthesized by nanoprecipitation. Soybeans grown hydroponically were treated with three concentrations (0.02, 0.2, and 2 mg/ml) of NPs at 28 days after germination. The effect of ZNPs and LNPs on plant health was determined through analysis of root and stem length, chlorophyll concentration, dry biomass of roots and stem, as well as carbon, nitrogen, and micronutrient absorption after 1, …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje Oct 2020

Lanthanide Nanoparticles As Contrast Agents For In Vivo Dual Energy Microcomputed Tomography Of The Mouse Vasculature, Charmainne Cruje

Electronic Thesis and Dissertation Repository

Dual energy (DE) computed tomography (CT) has the capability to influence medicine and pre-clinical research by providing quantitative information that can detect nascent lesions, identify perfusion restoration or inhomogeneities within tissues, and recognize the presence of calcium deposits. A wide variety of instrumentation techniques and scan protocols have been developed for DE CT, with a common goal of acquiring a pair of images that reports the attenuation of a given volume to two different x-ray distributions. While DE image acquisition has benefitted from technical advancements in CT, the contrast agents that are used are still predominantly composed of iodinated small …


Point-Of-Care Devices For Therapeutic, Medical And Environmental Applications, Alisha Prasad Sep 2020

Point-Of-Care Devices For Therapeutic, Medical And Environmental Applications, Alisha Prasad

LSU Doctoral Dissertations

Point-of-care testing (POCT) or Point-of-use (POU) devices or technologies are defined as testing aids that are capable for onsite use or testing. The key advantages of POCT are low sample volume, quick onsite diagnosis, high accuracy, and cost-effectiveness. POCT has the potential and the benefits to facilitate better health care management by rapid routine diagnosis and monitoring. To reach this goal, several researchers as well as the healthcare industry over a few years have conducted cutting edge research to bring science to technology by developing smart diagnostic devices capable of performing as per patient profiles and make personalized health care …


Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang Jun 2020

Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang

USF Tampa Graduate Theses and Dissertations

This thesis includes data and discussion about the technique of metal-enhanced fluorescence (MEF) to lower the detection limit of carcinoembryonic antigen (CEA). The detection limit goes down to 100pg/mL level when using MEF substrate made by rapid thermally annealed silver film covered by silica, which has great promise in diagnosing certain types of cancer that uses CEA as detection biomarker, such as pancreatic cancer and colon cancer. To further address the issue of background noises from non-specifically bound proteins (NSB) in complex media, such as plasma, serum, urine and blood, MEF is integrated with surface acoustic wave (SAW) streaming in …


Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek May 2020

Development Of Fluorescent Hyaluronic Acid Nanoparticles For Intraoperative Tumor Detection, Nicholas E. Wojtynek

Theses & Dissertations

Surgical resection remains to be the primary treatment for the majority of solid tumors, including breast cancer. The complete removal of the primary tumor, local metastases, and metastatic lymph nodes dramatically improve a patient’s treatment outcome and prognosis. Nevertheless, surgeons are limited to tactile and visual cues in distinguishing malignant and healthy tissue. This can result in a positive surgical margin (PSM), which occurs when tumor goes undetected and is left behind in the surgical cavity. PSMs decreases a patient’s prognosis and necessitate additional treatment in the form of surgery, radiation, and chemotherapy. An emerging imaging modality, known as fluorescence-guided …


Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit Jan 2020

Formulation And Validation Of Nanoparticle Controlled Delivery For Chemotherapeutic Drug Products, Shani L. Levit

Theses and Dissertations

Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP in vitro. Encapsulating either PTX or LAP into nanoparticles increases drug potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than …


Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin Jan 2020

Investigation On Nanoparticle Based Combination Therapy For Targeted Cancer Treatment, Muhammad Raisul Abedin

Doctoral Dissertations

“The current treatment methods in cancer are associated with toxicity in healthy tissues, partial therapeutic response, drug resistance and finally recurrence of the disease. The cancer drugs are challenged by non-specific binding, undesired toxicity in healthy cells, low therapeutic index and finally poor therapeutic outcome. In this work, a targeted nanoscale therapeutic system Antibody Drug Nanoparticle (ADN) was engineered to selectively inhibit the breast cancer cell growth with reduced toxicity in healthy cells. The ADNs were designed by synthesizing rod shaped anoparticles using pure chemotherapeutic drug and covalently conjugating a therapeutic monoclonal antibody (mAb) on the surface of the drug …


Extracellular Matrix Nanoparticles Effects On The Lung In Vivo, Brittaney E. Ritchie Jan 2020

Extracellular Matrix Nanoparticles Effects On The Lung In Vivo, Brittaney E. Ritchie

Theses and Dissertations

Acute respiratory distress syndrome (ARDS) is a life-threatening condition that causes diffuse alveolar damage and a loss of the extracellular matrix (ECM). This leads to pulmonary edema and lung function deterioration. Our lab has created decellularized porcine lung, electrosprayed ECM nanoparticles that have been previously shown to have pro-regenerative capabilities in vitro.

In this study, the ECM nanoparticle effects on young murine lungs were tested in vivo. An ECM nanoparticle suspension, previously used for the in vitro studies, was aerosolized intratracheally into the lungs using a microsprayer. 24 hours later, the lung mechanics, bronchoalveolar lavage fluid, and histology …


A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu May 2019

A Ph-Sensitive Delivery System For The Prevention Of Dental Caries Using Salivary Proteins, Yi Zhu

Electronic Thesis and Dissertation Repository

Dental caries remains one of the most common chronic diseases worldwide. Salivary proteins such as histatins have demonstrated biological functions directly related to tooth homeostasis and prevention of dental caries. However, histatins are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to target major oral diseases that occur under acidic conditions (e.g. dental caries and dental erosion). Four different types of chitosan polymers were investigated and the optimized CNs successfully loaded histatin 3 and released it selectively under acidic conditions. Through loading the survival time of histatin …


Cell Imaging And Data Analysis For Biomaterial-Mammalian Co-Cultures, Jefferson Pontsler May 2019

Cell Imaging And Data Analysis For Biomaterial-Mammalian Co-Cultures, Jefferson Pontsler

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Microscopic bioimaging is a useful approach to study cell-biomaterial interactions which are vital to the biomedical application of biomaterials. Through microscopic imaging, numerous cellular responses, such as proliferation, uptake, and death, can be recorded, characterized and analyzed.

In this thesis, I first provided basic introductions to the imaging techniques and analysis tools, especially those that are highly relevant to the studies of biomaterials and cell interactions. I also detailed the adaptation of these techniques and tools in the application of two specific research projects in biomaterials, with special focuses on the imaging and analysis.

The first project assessed the subtle …


Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims May 2018

Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims

Electronic Theses and Dissertations

A major challenge associated with delivery of active agents in the female reproductive tract (FRT) is the ability of agents to efficiently diffuse through the cervicovaginal mucosa (CVM) and reach the underlying sub-epithelial immune cell layer and vasculature. A variety of drug delivery vehicles have been employed to improve the delivery of agents across the CVM and offer the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract. Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, …


Silane Modulation Of Protein Conformation And Self-Assembly, Abul Bashar Mohammad Giasuddin May 2018

Silane Modulation Of Protein Conformation And Self-Assembly, Abul Bashar Mohammad Giasuddin

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This research focused on development of nanoparticle- based therapeutics against amyloid fibrils. Amyloid fibrils are associated with various diseases such as Parkinson’s, Huntington’s, mad cow disease, Alzheimer’s, and cataracts. Amyloid fibrils develop when proteins change their shape from a native form to a pathogenic “misfolded” form. The misfolded proteins have the ability to recruit more native proteins into the pathogenic forms, which self-assemble into amyloid fibrils that are hallmarks of the various protein-misfolding diseases listed above. Amyloid fibrils are highly resistant to degradation, which may contribute to the symptoms of amyloid diseases. Synthetic drugs, natural compounds, and antibodies are widely …


The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse Aug 2017

The Design, Fabrication, And Characterization Of Nanoparticle-Protein Interactions For Theranostic Applications, Wai Hei Tse

Electronic Thesis and Dissertation Repository

Theranostics, a combination of therapeutics and diagnostics, spans a spectrum of research areas to provide new opportunities in developing new healthcare technologies and medicine at affordable prices. Through employing a personalized medicine approach, biotechnology can be tailored to the needs of an individual. Applications of theranostics include drug delivery carriers capable of sustained drug release and targeted delivery, biosensors with high sensitivity and selectivity, and diagnostic relevant entities that can be incorporated into the former technologies. Nanotechnology provides a suitable foundation for theranostics to build upon due to material-based properties; magnetism, biocompatibility, and quantum effects to name a few. Purpose …


Crafting Nanostructured Neural Interfaces With Hydrogel Particles, Emily Ann Morin Aug 2017

Crafting Nanostructured Neural Interfaces With Hydrogel Particles, Emily Ann Morin

Doctoral Dissertations

Central nervous system neural device functionality hinges on effective communication with surrounding neurons. This depends on both the permissiveness of the device material to promote neuron integration and the ability of the device to avoid a chronic inflammatory response. Here, a facile approach has been developed exploring the multiple functionalities of hydrogel particles to provide cues to impart neural integration for such materials. Three distinct, yet interconnected tasks were undertaken: investigating hydrogel particle-modified substrate neuron integration and central nervous system inflammatory response, investigating guided hydrogel particle adsorption, and investigating hydrogel particles as local reservoirs for counteracting adverse effects from oxidative …


Development Of Spectroscopic Methods For Dynamic Cellular Level Study Of Biochemical Kinetics And Disease Progression, Anna M. Sitarski Mar 2017

Development Of Spectroscopic Methods For Dynamic Cellular Level Study Of Biochemical Kinetics And Disease Progression, Anna M. Sitarski

Electronic Theses and Dissertations

One of the current fundamental objectives in biomedical research is understanding molecular and cellular mechanisms of disease progression. Recent work in genetics support the stochastic nature of disease progression on the single cell level. For example, recent work has demonstrated that cancer as a disease state is reached after the accumulation of damages that result in genetic errors. Other diseases like Huntingtons, Parkinsons, Alzheimers, cardiovascular disease are developed over time and their cellular mechanisms of disease transition are largely unknown. Modern techniques of disease characterization are perturbative, invasive and fully destructive to biological samples. Many methods need a probe or …


Modified Pamam Dendrimers In Tunable Drug-Delivery Systems: A Sustained-Release Dendrimer Hydrogel For Anti-Glaucoma Drugs And Surface-Engineered Macrophages As Nanoparticle Carriers For Targeted Anti-Cancer Therapy, Christopher A. Holden Jan 2017

Modified Pamam Dendrimers In Tunable Drug-Delivery Systems: A Sustained-Release Dendrimer Hydrogel For Anti-Glaucoma Drugs And Surface-Engineered Macrophages As Nanoparticle Carriers For Targeted Anti-Cancer Therapy, Christopher A. Holden

Theses and Dissertations

Two specific drug-delivery applications were sought in this work using polyamidoamine (PAMAM) dendrimers. One drug-delivery system used a novel dendrimer hydrogel (DH) for sustained delivery of anti-glaucoma drugs. In this work, PAMAM G3.0 dendrimers were covalently bonded with poly(ethylene glycol) (PEG­12000) molecules which were subsequently acrylated, resulting in photocurable DH conjugates. For pharmacological studies, DH were loaded with a solution of intraocular pressure lowering drugs, brimonidine and timolol maleate, and were characterized for in vitro release and ex vivo transport and uptake. DH formulations were shown to increase the loading of drug molecules, increase transcorneal drug delivery, and …


Nanomedicine Drug Delivery Across Mucous Membranes, Michael G. Lancina Iii Jan 2017

Nanomedicine Drug Delivery Across Mucous Membranes, Michael G. Lancina Iii

Theses and Dissertations

NANOMEDECINE DRUG DELIVERY ACROSS MUCOUS MEMBRANES

By Michael G. Lancina III

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth Univeristy, 2017.

Major Director: Dr. Hu Yang, Associate Professor, Chemical and Life Science Engineering

Control over the distribution of therapeutic compounds is a complex and somewhat overlooked field of pharmaceutical research. When swallowing a pill or receiving an injection, it is commonly assumed that drug will spread throughout the body in a more or less uniform concentration and find its way to wherever it is needed. In …


Mechanism Of Interaction Of Peptide Modified Nanoparticles With Porphyromonas Gingivalis., Ankita Jain Dec 2016

Mechanism Of Interaction Of Peptide Modified Nanoparticles With Porphyromonas Gingivalis., Ankita Jain

Electronic Theses and Dissertations

Studies suggest that P. gingivalis functions as a keystone pathogen and interacts with primary colonizers in the supragingival biofilm such as S. gordonii. This interaction contributes to the initial colonization of the oral cavity by P. gingivalis and thus represents a potential target for therapeutic intervention. We have identified a peptide (BAR) derived from the streptococcal SspB protein that functions to inhibit P. gingivalis adherence to S. gordonii. In addition, we showed that nanoparticles (NPs) functionalized with BAR inhibit this interaction more potently than free soluble peptide, possibly by promoting interaction with P. gingivalis at higher valency than …


Graphene Quantum Dots-Based Drug Delivery For Ovarian Cancer Therapy, Yiru Qin May 2016

Graphene Quantum Dots-Based Drug Delivery For Ovarian Cancer Therapy, Yiru Qin

USF Tampa Graduate Theses and Dissertations

Ovarian cancer, one of the most dreadful malignancies of the female reproductive system, poses a lethal threat to women worldwide. In this dissertation, the objective was to introduce a novel type of graphene quantum dots (GQDs) based nano-sized drug delivery systems (DDS) for ovarian cancer treatment. As a starting point, the facile synthesis method of the GQDs was established. Subsequently, the targeting ligand,folic acid (FA), was conjugated to GQDs. Next, a FDA approved chemotherapeutic drug, Doxorubicin (DOX), was loaded to form the GQDs-FA-DOX nano-conjugation as the DDS. Moreover, the uptake profile and anti-cancer effect of the GQDs-FA-DOX were validated in …


Magnetism Of Magnetite Nanoparticles As Determined By Mössbauer Spectroscopy, Hien-Yoong Hah May 2016

Magnetism Of Magnetite Nanoparticles As Determined By Mössbauer Spectroscopy, Hien-Yoong Hah

Masters Theses

Fe3O4 [Magnetite] nanoparticles have magnetism that differs greatly from their bulk counterparts. Whereas bulk Fe3O4 is a ferrimagnet, single-domain Fe3O4 nanoparticles have been found to be superparamagnetic. This allows for increased magnetization of the nanoparticles compared to the bulk when in a magnetic field. For most paramagnets, magnetization requires applied fields of a few Tesla at low temperatures. This is achievable through the application of superconducting magnets. In superparamagnets, the high susceptibility of the particles allows magnetization through a Nd-Fe-B permanent magnet at room temperature. This is caused by an increased …


Ultrahigh Field Magnetic Resonance Imaging – Technical Development And Translational Applications, Judy Alper Jan 2016

Ultrahigh Field Magnetic Resonance Imaging – Technical Development And Translational Applications, Judy Alper

Dissertations and Theses

Magnetic resonance imaging (MRI) may be used to provide detailed images of the human body with excellent soft tissue contrast. Alongside its current widespread clinical applications for diagnosis and treatment, MRI allows researchers to measure structure and function of different tissue types in order to advance our understanding of human biology and enable new medical applications of MRI. In particular, diseases affecting nerves and vessels, such as trigeminal neuralgia, with uncertain etiology can be studied using multiple MRI modalities so that treatment planning can we more effective and patient outcomes can be improved. Ultrahigh field MRI scanners, such as those …


Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes Jan 2016

Bioactive Poly(Beta-Amino Ester) Biomaterials For Treatment Of Infection And Oxidative Stress, Andrew L. Lakes

Theses and Dissertations--Chemical and Materials Engineering

Polymers have deep roots as drug delivery tools, and are widely used in clinical to private settings. Currently, however, numerous traditional therapies exist which may be improved through use of polymeric biomaterials. Through our work with infectious and oxidative stress disease prevention and treatment, we aimed to develop application driven, enhanced therapies utilizing new classes of polymers synthesized in-house. Applying biodegradable poly(β-amino ester) (PBAE) polymers, covalent-addition of bioactive substrates to these PBAEs avoided certain pitfalls of free-loaded and non-degradable drug delivery systems. Further, through variation of polymer ingredients and conditions, we were able to tune degradation rates, release profiles, cellular …


Synthesis And Characterization Of Curcumin Polymer For Application In Radiation Induced Lung Damage, Mark C. Bailey Jan 2016

Synthesis And Characterization Of Curcumin Polymer For Application In Radiation Induced Lung Damage, Mark C. Bailey

Theses and Dissertations--Chemical and Materials Engineering

Radiotherapy is used as a primary treatment for many cancers, including lung cancer. Although radiotherapy has proven to be an effective cancer treatment, its use is heavily limited due to the peripheral toxicity to healthy tissue. In this work, the antioxidant, curcumin, was tested as a radioprotectant to reduce radiation damage to healthy cells. Curcumin has been limited in use due to its poor bioavailability. In order to avoid problems associated with free curcumin delivery, curcumin poly(beta-amino ester) (CPBAE) was synthesized.

The first study investigated the in vitro radioprotection effect of curcumin in HUVEC dosed with gamma radiation. Cells treated …