Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Sugarcane Bagasse Hydrolysis Enhancement Using Bsa, Antonio Carlos Freitas Dos Santos Dec 2016

Sugarcane Bagasse Hydrolysis Enhancement Using Bsa, Antonio Carlos Freitas Dos Santos

Open Access Theses

Lignocellulose is composed of polysaccharides linked to lignin and other aromatic compounds, making the sugars not readily available to fermentation. This entails that biomass must go through the unit operations of pretreatment and enzyme hydrolysis. Pretreatment opens the structure to allow the enzymes to act on and hydrolyze cellulose and hemicellulose to glucose and/or xylose which in turn are fermented to ethanol. Concomitantly, the enzymes interact with soluble phenols and insoluble solids derived from lignin that inhibit hydrolysis. This leads to high enzyme loadings and higher production costs. Soluble phenols can be eliminated through washing. Insoluble lignin, however, demands another …


Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu Dec 2016

Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu

Graduate Theses and Dissertations

Membrane chromatography, or membrane adsorber, represents an attractive alternative to conventional packed bed chromatography used in downstream processing. Membrane chromatography has many advantages, including high productivity, low buffer consumption and ease to scale up. This doctoral dissertation focuses on developing novel polymeric ligands for protein separations using membrane chromatography. Atom transfer radical polymerization (ATRP), known as a controlled radical polymerization technique, has been used to control the architecture of grafted polymeric ligands. The center theme of this dissertation is to develop new polymeric ligands and investigate how the polymer’s property (e.g. flexibility, hydrophobicity) and architecture (e.g. chain density, chain length) …


Enhancing Silymarin Fractionation Via Molecular Modeling Using The Conductor-Like Screening Model For Real Solvents, Emma C. Brace Aug 2016

Enhancing Silymarin Fractionation Via Molecular Modeling Using The Conductor-Like Screening Model For Real Solvents, Emma C. Brace

Open Access Theses

The market for bio-based products from plant sources is on the rise. There is a global challenge to implement environmentally clean practices for the production of fuels and pharmaceuticals from sustainable resources. A significant hurdle for discovery of comparable plant-derived products is the extensive volume of trial-and-error experimentation required. To alleviate the experimental burden, a quantum mechanics based molecular modeling approach known as the COnductor-like Screening Model for Real Solvents (COSMO-RS) was used to predict the best biphasic solvent system to purify silymarins from an aqueous mixture. Silymarins are a class of flavonolignans present in milk thistle ( Silybum marianum …


Investigation Of The Inherent Chemical, Structural, And Mechanical Attributes Of Bio-Engineered Composites Found In Nature: Alligator Gar’S Exoskeleton Fish Scales, Wayne Derald Hodo Dec 2015

Investigation Of The Inherent Chemical, Structural, And Mechanical Attributes Of Bio-Engineered Composites Found In Nature: Alligator Gar’S Exoskeleton Fish Scales, Wayne Derald Hodo

Graduate Theses and Dissertations

The U.S. Army has determined a huge cost savings of up to 51% can be accomplished by reducing the gross vehicle weight, for their personnel carrier, by 33%. To cut cost, composite materials are needed. Man-made composites can have superior material properties (high-strength, high-fracture toughness, and lightweight), but they are prone to delamination at the glued-layered interface. In contrast, fish scale is a natural composite that has the same material properties and, additionally, tend not to delaminate.

The focus of this study was to learn how nature integrates hard and soft materials at each length scale to form a layered …


Using Peptoids To Build Robust, Efficient Microarray Systems, Dhaval Sunil Shah Jul 2015

Using Peptoids To Build Robust, Efficient Microarray Systems, Dhaval Sunil Shah

Graduate Theses and Dissertations

Recent studies have shown microarrays to be indispensable for various biological applications, allowing for high-throughput processing and screening of biological samples such as RNA, DNA, proteins and peptides using a small sample volume (< 1 µL). Peptoids (poly-N-substituted glycine oligomers) can be used as a substitute for antibodies as capture molecules, as well as coatings for slides in antibody microarrays. The ease of synthesis of peptoids, high customizability with desired bioactivity, and speed of synthesis allows us to build a diagnostic system with a large dynamic range that can detect biomolecules from a minimal sample size. In this study, peptoid-based antibody mimics are designed to have both structural and functional features similar to those of antibodies, including a stable constant region (scaffolding) and a variable region for protein recognition. Peptoids previously screened via combinatorial library synthesis to be specific to bind Mdm-2 (mouse double minute 2 homolog) and GST (gluthathione S-transferase), have been synthesized. The protein recognition peptoids have been conjugated to PEG (polyethylene glycol) molecules with modified end groups; an amine group on one end that allows for immobilization and orientation on the slide, and an azide group on the other end that will allow for attachment to the peptoid through “click chemistry”. The number of capture molecules printed on the slides can be increased by making the available surface area of the slide larger via coating with microspheres. We have determined that partially water soluble peptoids that are also helical, can self-assemble into microspheres. Sequences have been developed that can consistently produce uniform microsphere coatings on slides that increase the overall surface area. A high surface area corresponds to a higher number of binding sites, and therefore a more sensitive system. The work done has shown that slides may be successfully coated in order to potentially improve the detection system.


Developing An Unstructured Model To Investigate The Effect Of Ethanol On Product Yields For Glucose And Xylose Cofermentation In Saccharomyces Cerevisiae 424a (Lnh-St), Shane D. Clingenpeel Apr 2014

Developing An Unstructured Model To Investigate The Effect Of Ethanol On Product Yields For Glucose And Xylose Cofermentation In Saccharomyces Cerevisiae 424a (Lnh-St), Shane D. Clingenpeel

Open Access Theses

Production of bio-ethanol from lignocellulose requires the efficient fermentation of glucose and xylose, even in the presence of inhibitors. The desired product, ethanol itself, will inhibit the fermentation. A further understanding of how ethanol affects the organism is critical to overcoming its inhibition.

This thesis evaluated the effect of ethanol on the cofermentation of glucose and xylose in two different cases. The first case had an unstructured model created for Saccharomyces cerevisiae 424A (LNH-ST), a genetically modified strain of yeast capable of cofermenting glucose and xylose. The differential equations were based around sugar consumption, and the product yields were investigated …


Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi Dec 2013

Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi

Graduate Theses and Dissertations

Water-soluble Quantum Dots (QDs) are highly sensitive fluorescent probes that are often used to study biological species. One of the most common ways to render QDs water-soluble for such applications is to apply hydrophilic thiolated ligands to the QD surface. However, these ligands are labile and can be easily exchanged on the QD surface, which can severely limit their application. As one way to overcome this limitation while maintaining a small colloidal size of QDs, we developed a method to stabilize hydrophilic thiolated ligands on the surface of QDs through the formation of a crosslinked shell using a photocrosslinking approach. …


The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings May 2013

The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings

Graduate Theses and Dissertations

In this dissertation, the relationship between the geometry of ion-beam sculpted solid-state nanopores and their ability to analyze single DNA molecules using resistive pulse sensing is investigated. To accomplish this, the three dimensional shape of the nanopore is determined using energy filtered and tomographic transmission electron microscopy. It is shown that this information enables the prediction of the ionic current passing through a voltage biased nanopore and improves the prediction of the magnitude of current drop signals when the nanopore interacts with single DNA molecules. The dimensional stability of nanopores in solution is monitored using this information and is improved …


Capillary And Microchip Electrophoresis For The Monitoring Of Disease Causing Amyloid Proteins, Elizabeth Nancy Pryor Dec 2012

Capillary And Microchip Electrophoresis For The Monitoring Of Disease Causing Amyloid Proteins, Elizabeth Nancy Pryor

Graduate Theses and Dissertations

The detection of oligomers and aggregates formed by two amyloid proteins, insulin and amyloid-beta (AB), is of particular importance due to the role which these species play in Diabetes and Alzheimer's disease, respectively. However, existing techniques are limited in the ability to detect insulin and AB; oligomers due to the fact that these early aggregates are transient, present at low concentrations, and difficult to isolate. Improvements must be made to existing techniques or alternative techniques must be explored in order to identify and quantify the size of these oligomeric and aggregate species without disrupting their structure.

Capillary and microchip electrophoresis …


Micro, Nano Encapsulation Methods For Sustained Release Drug Formulations And Biomimetic Applications, Shantanu Balkundi Jul 2009

Micro, Nano Encapsulation Methods For Sustained Release Drug Formulations And Biomimetic Applications, Shantanu Balkundi

Doctoral Dissertations

The Layer-by-Layer (LbL) assembly technique was used to obtain a new type of protein/polyphenol microcapsule based on naturally occurring polyphenol (-)-epigallocatechin gallate (EGCG) and gelatin, type A. The dependence of permeability on the molecular weight of permeating substances was studied and compared with commonly used polyallylamine/polystyrene sulfonate capsules. A quartz crystal microbalance was used to monitor the regularities of EGCG adsorption in alternation with type A and B Gelatins and electrophoretic mobility measurements were used that indicated that the nature of assembly was dependent on Gelatin properties. It was shown that EGCG retains its antioxidant activity in the LbL assemblies. …


Gene Synthesis, Cloning, Expression, Purification And Biophysical Characterization Of The C2 Domain Of Human Tensin, Kiran Sukumar Gajula Oct 2007

Gene Synthesis, Cloning, Expression, Purification And Biophysical Characterization Of The C2 Domain Of Human Tensin, Kiran Sukumar Gajula

Doctoral Dissertations

Tensin is a large "docking" protein found in the adhesive junctions of animal cells and recruited early in the development of cell-substrate contacts. There it binds to the cytoplasmic domain of integrin β1 and caps the barbed ends of filamentous actin. This forms a rational basis for its implication in a direct role in the mechanics of membrane-cytoskeleton interactions. Tensin provides a physical link between the actin cytoskeleton, integrins, and other proteins at the cell-substrate contacts. Its overall biochemical properties are a function of its domain composition and architecture, i.e., the domains that are present and their relative positions in …


Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel Oct 2004

Layer-By-Layer Self -Assembly For Enzyme And Dna Encapsulation And Delivery, Amish Patel

Doctoral Dissertations

Thin wall microcapsules were formed via Layer-by-Layer Self-Assembly of alternate adsorption of oppositely charged polyelectrolyte on microcores. After the core dissolution, empty polymeric shells with 20–25 nm thick walls were obtained. These microcapsules were loaded with Myoglobin, Hemoglobin and Glucose Oxidase by opening capsule pores at low pH and closing them at higher pH. The native structure of the enzyme was not affected due to different treatments. Biocompatible nanoshells were also prepared for encasing DNA. Using the same Layer-by-Layer Self-Assembly approach nanoparticle were constructed containing DNA as one of the layers. The nanoparticles of different architecture were used to deliver …


A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu Jul 2004

A High -Order Finite Difference Method For Solving Bioheat Transfer Equations In Three-Dimensional Triple -Layered Skin Structure, Haofeng Yu

Doctoral Dissertations

Investigations on instantaneous skin burns are useful for an accurate assessment of burn-evaluation and for establishing thermal protections for various purposes. Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it is essential for developers and users of hyperthermia systems to predict, and interpret correctly the biomass thermal and vascular response to heating. In this dissertation, we employ the well-known Pennes' bioheat transfer equation to predict the degree of skin burn and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes' bioheat transfer equation in a three-dimensional single …


Metabolism Of Arachidonate-Containing Phospholipid Molecular Species In The Murine Macrophage-Like Cell Line, P388d1, Crystal R. Waites May 1991

Metabolism Of Arachidonate-Containing Phospholipid Molecular Species In The Murine Macrophage-Like Cell Line, P388d1, Crystal R. Waites

Electronic Theses and Dissertations

Glycerophospholipids of mammalian cells exist as chemically diverse structures with various fatty acids at the sn-1 and sn-2 positions. Arachidonic acid, a polyunsaturated fatty acid, which may be converted to biologically active eicosanoids such as prostaglandins, thromboxanes, and leukotrienes, is found predominantly in the sn-2 position of glycerophospholipids. The purpose of this study was to examine, at the level of the individual molecular species, the incorporation of arachidonate into phospholipids and its release from phospholipids during stimulation. In this way, the specificity of the enzymes controlling arachidonate metabolism could be examined in order to clarify the processes that control the …