Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Artificial Intelligence and Robotics

Institution
Keyword
Publication Year
Publication

Articles 31 - 60 of 239

Full-Text Articles in Engineering

Deep Siamese Neural Networks For Facial Expression Recognition In The Wild, Wassan Hayale Jan 2020

Deep Siamese Neural Networks For Facial Expression Recognition In The Wild, Wassan Hayale

Electronic Theses and Dissertations

The variation of facial images in the wild conditions due to head pose, face illumination, and occlusion can significantly affect the Facial Expression Recognition (FER) performance. Moreover, between subject variation introduced by age, gender, ethnic backgrounds, and identity can also influence the FER performance. This Ph.D. dissertation presents a novel algorithm for end-to-end facial expression recognition, valence and arousal estimation, and visual object matching based on deep Siamese Neural Networks to handle the extreme variation that exists in a facial dataset. In our main Siamese Neural Networks for facial expression recognition, the first network represents the classification framework, where ...


Automated Recognition Of Facial Affect Using Deep Neural Networks, Behzad Hasani Jan 2020

Automated Recognition Of Facial Affect Using Deep Neural Networks, Behzad Hasani

Electronic Theses and Dissertations

Automated Facial Expression Recognition (FER) has been a topic of study in the field of computer vision and machine learning for decades. In spite of efforts made to improve the accuracy of FER systems, existing methods still are not generalizable and accurate enough for use in real-world applications. Many of the traditional methods use hand-crafted (a.k.a. engineered) features for representation of facial images. However, these methods often require rigorous hyper-parameter tuning to achieve favorable results.

Recently, Deep Neural Networks (DNNs) have shown to outperform traditional methods in visual object recognition. DNNs require huge data as well as powerful ...


Deep Reinforcement Learning For The Optimization Of Building Energy Control And Management, Jun Hao Jan 2020

Deep Reinforcement Learning For The Optimization Of Building Energy Control And Management, Jun Hao

Electronic Theses and Dissertations

Most of the current game-theoretic demand-side management methods focus primarily on the scheduling of home appliances, and the related numerical experiments are analyzed under various scenarios to achieve the corresponding Nash-equilibrium (NE) and optimal results. However, not much work is conducted for academic or commercial buildings. The methods for optimizing academic-buildings are distinct from the optimal methods for home appliances. In my study, we address a novel methodology to control the operation of heating, ventilation, and air conditioning system (HVAC).

We assume that each building in our campus is equipped with smart meter and communication system which is envisioned in ...


Fault Detection And Classification Of A Single Phase Inverter Using Artificial Neural Networks, Ayomikun Samuel Orukotan Jan 2020

Fault Detection And Classification Of A Single Phase Inverter Using Artificial Neural Networks, Ayomikun Samuel Orukotan

All Graduate Theses, Dissertations, and Other Capstone Projects

The detection of switching faults of power converters or the Circuit Under Test (CUT) is real-time important for safe and efficient usage. The CUT is a single-phase inverter. This thesis presents two unique methods that rely on backpropagation principles to solve classification problems with a two-layer network. These mathematical algorithms or proposed networks are able to diagnose single, double, triple, and multiple switching faults over different iterations representing range of frequencies. First, the fault detection and classification problems are formulated as neural network-based classification problems and the neural network design process is clearly described. Then, neural networks are trained over ...


Satellite Constellation Deployment And Management, Joseph Ryan Kopacz Jan 2020

Satellite Constellation Deployment And Management, Joseph Ryan Kopacz

Electronic Theses and Dissertations

This paper will review results and discuss a new method to address the deployment and management of a satellite constellation. The first two chapters will explorer the use of small satellites, and some of the advances in technology that have enabled small spacecraft to maintain modern performance requirements in incredibly small packages.

The third chapter will address the multiple-objective optimization problem for a global persistent coverage constellation of communications spacecraft in Low Earth Orbit. A genetic algorithm was implemented in MATLAB to explore the design space – 288 trillion possibilities – utilizing the Satellite Tool Kit (STK) software developers kit. STK and ...


A Comprehensive And Modular Robotic Control Framework For Model-Less Control Law Development Using Reinforcement Learning For Soft Robotics, Charles Sullivan Jan 2020

A Comprehensive And Modular Robotic Control Framework For Model-Less Control Law Development Using Reinforcement Learning For Soft Robotics, Charles Sullivan

Open Access Theses & Dissertations

Soft robotics is a growing field in robotics research. Heavily inspired by biological systems, these robots are made of softer, non-linear, materials such as elastomers and are actuated using several novel methods, from fluidic actuation channels to shape changing materials such as electro-active polymers. Highly non-linear materials make modeling difficult, and sensors are still an area of active research. These issues have rendered typical control and modeling techniques often inadequate for soft robotics. Reinforcement learning is a branch of machine learning that focuses on model-less control by mapping states to actions that maximize a specific reward signal. Reinforcement learning has ...


Facial Action Unit Detection With Deep Convolutional Neural Networks, Siddhesh Padwal Jan 2020

Facial Action Unit Detection With Deep Convolutional Neural Networks, Siddhesh Padwal

Electronic Theses and Dissertations

The facial features are the most important tool to understand an individual's state of mind. Automated recognition of facial expressions and particularly Facial Action Units defined by Facial Action Coding System (FACS) is challenging research problem in the field of computer vision and machine learning. Researchers are working on deep learning algorithms to improve state of the art in the area. Automated recognition of facial action units has man applications ranging from developmental psychology to human robot interface design where companies are using this technology to improve their consumer devices (like unlocking phone) and for entertainment like FaceApp. Recent ...


Fault Identification On Electrical Transmission Lines Using Artificial Neural Networks, Christopher W. Asbery Jan 2020

Fault Identification On Electrical Transmission Lines Using Artificial Neural Networks, Christopher W. Asbery

Theses and Dissertations--Electrical and Computer Engineering

Transmission lines are designed to transport large amounts of electrical power from the point of generation to the point of consumption. Since transmission lines are built to span over long distances, they are frequently exposed to many different situations that can cause abnormal conditions known as electrical faults. Electrical faults, when isolated, can cripple the transmission system as power flows are directed around these faults therefore leading to other numerous potential issues such as thermal and voltage violations, customer interruptions, or cascading events. When faults occur, protection systems installed near the faulted transmission lines will isolate these faults from the ...


A Comparative Analysis Of Reinforcement Learning Applied To Task-Space Reaching With A Robotic Manipulator With And Without Gravity Compensation, Jonathan Fugal Jan 2020

A Comparative Analysis Of Reinforcement Learning Applied To Task-Space Reaching With A Robotic Manipulator With And Without Gravity Compensation, Jonathan Fugal

Theses and Dissertations--Electrical and Computer Engineering

Advances in computing power in recent years have facilitated developments in autonomous robotic systems. These robotic systems can be used in prosthetic limbs, wearhouse packaging and sorting, assembly line production, as well as many other applications. Designing these autonomous systems typically requires robotic system and world models (for classical control based strategies) or time consuming and computationally expensive training (for learning based strategies). Often these requirements are difficult to fulfill. There are ways to combine classical control and learning based strategies that can mitigate both requirements. One of these ways is to use a gravity compensated torque control with reinforcement ...


Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay Jan 2020

Development Of A Modeling Algorithm To Predict Lean Implementation Success, Richard Charles Barclay

Doctoral Dissertations

”Lean has become a common term and goal in organizations throughout the world. The approach of eliminating waste and continuous improvement may seem simple on the surface but can be more complex when it comes to implementation. Some firms implement lean with great success, getting complete organizational buy-in and realizing the efficiencies foundational to lean. Other organizations struggle to implement lean. Never able to get the buy-in or traction needed to really institute the sort of cultural change that is often needed to implement change. It would be beneficial to have a tool that organizations could use to assess their ...


Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook Jan 2020

Studying The Effects Of Various Process Parameters On Early Age Hydration Of Single- And Multi-Phase Cementitious Systems, Rachel Cook

Doctoral Dissertations

”The hydration of multi-phase ordinary Portland cement (OPC) and its pure phase derivatives, such as tricalcium silicate (C3S) and belite (ß-C2S), are studied in the context varying process parameters -- for instance, variable water content, water activity, superplasticizer structure and dose, and mineral additive type and particle size. These parameters are studied by means of physical experiments and numerical/computational techniques, such as: thermodynamic estimations; numerical kinetic-based modelling; and artificial intelligence techniques like machine learning (ML) models. In the past decade, numerical kinetic modeling has greatly improved in terms of fitting experimental, isothermal calorimetry to kinetic-based modelling ...


Landing Throttleable Hybrid Rockets With Hierarchical Reinforcement Learning In A Simulated Environment, Francesco Alessandro Stefano Mikulis-Borsoi Jan 2020

Landing Throttleable Hybrid Rockets With Hierarchical Reinforcement Learning In A Simulated Environment, Francesco Alessandro Stefano Mikulis-Borsoi

Honors Theses and Capstones

In this paper, I develop a hierarchical Markov Decision Process (MDP) structure for completing the task of vertical rocket landing. I start by covering the background of this problem, and formally defining its constraints. In order to reduce mistakes while formulating different MDPs, I define and develop the criteria for a standardized MDP definition format. I then decompose the problem into several sub-problems of vertical landing, namely velocity control and vertical stability control. By exploiting MDP coupling and symmetrical properties, I am able to significantly reduce the size of the state space compared to a unified MDP formulation. This paper ...


Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez Jan 2020

Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez

Open Access Theses & Dissertations

With the ever-increasing demands in the space domain and accessibility to low-cost small satellite platforms for educational and scientific projects, efforts are being made in various technology capacities including robotics and artificial intelligence in microgravity. The MIRO Center for Space Exploration and Technology Research (cSETR) prepares the development of their second nanosatellite to launch to space and it is with that opportunity that a 3-DOF robotic arm is in development to be one of the payloads in the nanosatellite. Analyses, hardware implementation, and testing demonstrate a potential positive outcome from including the payload in the nanosatellite and a deep learning ...


Exploring Strategies For Adapting Traditional Vehicle Design Frameworks To Autonomous Vehicle Design, Alex Munoz Jan 2020

Exploring Strategies For Adapting Traditional Vehicle Design Frameworks To Autonomous Vehicle Design, Alex Munoz

Walden Dissertations and Doctoral Studies

Fully autonomous vehicles are expected to revolutionize transportation, reduce the cost of ownership, contribute to a cleaner environment, and prevent the majority of traffic accidents and related fatalities. Even though promising approaches for achieving full autonomy exist, developers and manufacturers have to overcome a multitude of challenged before these systems could find widespread adoption. This multiple case study explored the strategies some IT hardware and software developers of self-driving cars use to adapt traditional vehicle design frameworks to address consumer and regulatory requirements in autonomous vehicle designs. The population consisted of autonomous driving technology software and hardware developers who are ...


Bio-Inspired Learning And Hardware Acceleration With Emerging Memories, Shruti R. Kulkarni Dec 2019

Bio-Inspired Learning And Hardware Acceleration With Emerging Memories, Shruti R. Kulkarni

Dissertations

Machine Learning has permeated many aspects of engineering, ranging from the Internet of Things (IoT) applications to big data analytics. While computing resources available to implement these algorithms have become more powerful, both in terms of the complexity of problems that can be solved and the overall computing speed, the huge energy costs involved remains a significant challenge. The human brain, which has evolved over millions of years, is widely accepted as the most efficient control and cognitive processing platform. Neuro-biological studies have established that information processing in the human brain relies on impulse like signals emitted by neurons called ...


Finding A Viable Neural Network Architecture For Use With Upper Limb Prosthetics, Maxwell Lavin Dec 2019

Finding A Viable Neural Network Architecture For Use With Upper Limb Prosthetics, Maxwell Lavin

Master of Science in Computer Science Theses

This paper attempts to answer the question of if it’s possible to produce a simple, quick, and accurate neural network for the use in upper-limb prosthetics. Through the implementation of convolutional and artificial neural networks and feature extraction on electromyographic data different possible architectures are examined with regards to processing time, complexity, and accuracy. It is found that the most accurate architecture is a multi-entry categorical cross entropy convolutional neural network with 100% accuracy. The issue is that it is also the slowest method requiring 9 minutes to run. The next best method found was a single-entry binary cross ...


An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza Dec 2019

An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza

Dissertations and Theses

Food wastage is a problem that affects all demographics and regions of the world. Each year, approximately one-third of food produced for human consumption is thrown away. In an effort to track and reduce food waste in the commercial sector, some companies utilize third party devices which collect data to analyze individual contributions to the global problem. These devices track the type of food wasted (such as vegetables, fruit, boneless chicken, pasta) along with the weight. Some devices also allow the user to leave the food in a kitchen container while it is weighed, so the container weight must also ...


Image Restoration Using Automatic Damaged Regions Detection And Machine Learning-Based Inpainting Technique, Chloe Martin-King Dec 2019

Image Restoration Using Automatic Damaged Regions Detection And Machine Learning-Based Inpainting Technique, Chloe Martin-King

Computational and Data Sciences (PhD) Dissertations

In this dissertation we propose two novel image restoration schemes. The first pertains to automatic detection of damaged regions in old photographs and digital images of cracked paintings. In cases when inpainting mask generation cannot be completely automatic, our detection algorithm facilitates precise mask creation, particularly useful for images containing damage that is tedious to annotate or difficult to geometrically define. The main contribution of this dissertation is the development and utilization of a new inpainting technique, region hiding, to repair a single image by training a convolutional neural network on various transformations of that image. Region hiding is also ...


Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh Oct 2019

Function And Dissipation In Finite State Automata - From Computing To Intelligence And Back, Natesh Ganesh

Doctoral Dissertations

Society has benefited from the technological revolution and the tremendous growth in computing powered by Moore's law. However, we are fast approaching the ultimate physical limits in terms of both device sizes and the associated energy dissipation. It is important to characterize these limits in a physically grounded and implementation-agnostic manner, in order to capture the fundamental energy dissipation costs associated with performing computing operations with classical information in nano-scale quantum systems. It is also necessary to identify and understand the effect of quantum in-distinguishability, noise, and device variability on these dissipation limits. Identifying these parameters is crucial to ...


Big-Data Talent Analytics In The Public Sector: A Promotion And Firing Model Of Employees At Federal Agencies, Rabih Neouchi Oct 2019

Big-Data Talent Analytics In The Public Sector: A Promotion And Firing Model Of Employees At Federal Agencies, Rabih Neouchi

Engineering Management, Information, and Systems Research Theses and Dissertations

Talent analytics is a relatively new area of focus to researchers working in analytics and data science. Talent Analytics has the potential to help companies make many informed critical decisions around talent acquisition, promotion and retention. This work investigates data science to predict “shiny star” employees in the U.S. public sector, defined as top-notch performers over the years of a given time span. Its scope falls within talent analytics, also called people analytics, a relatively new research area.

We clean a data set made available by the U.S. Office of Personnel Management (OPM) and present two models to ...


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Disssertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure ...


Feature Space Modeling For Accurate And Efficient Learning From Non-Stationary Data, Ayesha Akter Oct 2019

Feature Space Modeling For Accurate And Efficient Learning From Non-Stationary Data, Ayesha Akter

Doctoral Dissertations

A non-stationary dataset is one whose statistical properties such as the mean, variance, correlation, probability distribution, etc. change over a specific interval of time. On the contrary, a stationary dataset is one whose statistical properties remain constant over time. Apart from the volatile statistical properties, non-stationary data poses other challenges such as time and memory management due to the limitation of computational resources mostly caused by the recent advancements in data collection technologies which generate a variety of data at an alarming pace and volume. Additionally, when the collected data is complex, managing data complexity, emerging from its dimensionality and ...


Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan Aug 2019

Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan

Dissertations

Despite an extensive history of oceanic observation, researchers have only begun to build a complete picture of oceanic currents. Sparsity of instrumentation has created the need to maximize the information extracted from every source of data in building this picture. Within the last few decades, autonomous vehicles, or AVs, have been employed as tools to aid in this research initiative. Unmanned and self-propelled, AVs are capable of spending weeks, if not months, exploring and monitoring the oceans. However, the quality of data acquired by these vehicles is highly dependent on the paths along which they collect their observational data. The ...


Developing Algorithms To Detect Incidents On Freeways From Loop Detector And Vehicle Re-Identification Data, Biraj Adhikari Jul 2019

Developing Algorithms To Detect Incidents On Freeways From Loop Detector And Vehicle Re-Identification Data, Biraj Adhikari

Civil & Environmental Engineering Theses & Dissertations

A new approach for testing incident detection algorithms has been developed and is presented in this thesis. Two new algorithms were developed and tested taking California #7, which is the most widely used algorithm to date, and SVM (Support Vector Machine), which is considered one of the best performing classifiers, as the baseline for comparisons. Algorithm #B in this study uses data from Vehicle Re-Identification whereas the other three algorithms (California #7, SVM and Algorithm #A) use data from a double loop detector for detection of an incident. A microscopic traffic simulator is used for modeling three types of incident ...


Field Drilling Data Cleaning And Preparation For Data Analytics Applications, Daniel Cardoso Braga Jun 2019

Field Drilling Data Cleaning And Preparation For Data Analytics Applications, Daniel Cardoso Braga

LSU Master's Theses

Throughout the history of oil well drilling, service providers have been continuously striving to improve performance and reduce total drilling costs to operating companies. Despite constant improvement in tools, products, and processes, data science has not played a large part in oil well drilling. With the implementation of data science in the energy sector, companies have come to see significant value in efficiently processing the massive amounts of data produced by the multitude of internet of thing (IOT) sensors at the rig. The scope of this project is to combine academia and industry experience to analyze data from 13 different ...


Identifying Hourly Traffic Patterns With Python Deep Learning, Christopher L. Leavitt Jun 2019

Identifying Hourly Traffic Patterns With Python Deep Learning, Christopher L. Leavitt

Computer Engineering

This project was designed to explore and analyze the potential abilities and usefulness of applying machine learning models to data collected by parking sensors at a major metro shopping mall. By examining patterns in rates at which customer enter and exit parking garages on the campus of the Bellevue Collection shopping mall in Bellevue, Washington, a recurrent neural network will use data points from the previous hours will be trained to forecast future trends.


Labeling Paths With Convolutional Neural Networks, Sean Wallace, Kyle Wuerch Jun 2019

Labeling Paths With Convolutional Neural Networks, Sean Wallace, Kyle Wuerch

Computer Engineering

With the increasing development of autonomous vehicles, being able to detect driveable paths in arbitrary environments has become a prevalent problem in multiple industries. This project explores a technique which utilizes a discretized output map that is used to color an image based on the confidence that each block is a driveable path. This was done using a generalized convolutional neural network that was trained on a set of 3000 images taken from the perspective of a robot along with matching masks marking which portion of the image was a driveable path. The techniques used allowed for a labeling accuracy ...


Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji Jun 2019

Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji

Honors Theses

Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured, rugged, and dynamic environments. However, the properties that make soft robots compelling also make them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty search algorithm.


Probabilistic Spiking Neural Networks : Supervised, Unsupervised And Adversarial Trainings, Alireza Bagheri May 2019

Probabilistic Spiking Neural Networks : Supervised, Unsupervised And Adversarial Trainings, Alireza Bagheri

Dissertations

Spiking Neural Networks (SNNs), or third-generation neural networks, are networks of computation units, called neurons, in which each neuron with internal analogue dynamics receives as input and produces as output spiking, that is, binary sparse, signals. In contrast, second-generation neural networks, termed as Artificial Neural Networks (ANNs), rely on simple static non-linear neurons that are known to be energy-intensive, hindering their implementations on energy-limited processors such as mobile devices. The sparse event-based characteristics of SNNs for information transmission and encoding have made them more feasible for highly energy-efficient neuromorphic computing architectures. The most existing training algorithms for SNNs are based ...


Detection Of Sand Boils From Images Using Machine Learning Approaches, Aditi S. Kuchi May 2019

Detection Of Sand Boils From Images Using Machine Learning Approaches, Aditi S. Kuchi

University of New Orleans Theses and Dissertations

Levees provide protection for vast amounts of commercial and residential properties. However, these structures degrade over time, due to the impact of severe weather, sand boils, subsidence of land, seepage, etc. In this research, we focus on detecting sand boils. Sand boils occur when water under pressure wells up to the surface through a bed of sand. These make levees especially vulnerable. Object detection is a good approach to confirm the presence of sand boils from satellite or drone imagery, which can be utilized to assist in the automated levee monitoring methodology. Since sand boils have distinct features, applying object ...