Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning Aug 2020

Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning

Electrical & Computer Engineering Theses & Disssertations

Mobile devices are becoming smarter to satisfy modern user's increasing needs better, which is achieved by equipping divers of sensors and integrating the most cutting-edge Deep Learning (DL) techniques. As a sophisticated system, it is often vulnerable to multiple attacks (side-channel attacks, neural backdoor, etc.). This dissertation proposes solutions to maintain the cyber-hygiene of the DL-Based smartphone system by exploring possible vulnerabilities and developing countermeasures.

First, I actively explore possible vulnerabilities on the DL-Based smartphone system to develop proactive defense mechanisms. I discover a new side-channel attack on smartphones using the unrestricted magnetic sensor data. I demonstrate that attackers ...


Fault Detection And Classification Of A Single Phase Inverter Using Artificial Neural Networks, Ayomikun Samuel Orukotan Jan 2020

Fault Detection And Classification Of A Single Phase Inverter Using Artificial Neural Networks, Ayomikun Samuel Orukotan

All Graduate Theses, Dissertations, and Other Capstone Projects

The detection of switching faults of power converters or the Circuit Under Test (CUT) is real-time important for safe and efficient usage. The CUT is a single-phase inverter. This thesis presents two unique methods that rely on backpropagation principles to solve classification problems with a two-layer network. These mathematical algorithms or proposed networks are able to diagnose single, double, triple, and multiple switching faults over different iterations representing range of frequencies. First, the fault detection and classification problems are formulated as neural network-based classification problems and the neural network design process is clearly described. Then, neural networks are trained over ...


Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez Jan 2020

Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez

Open Access Theses & Dissertations

With the ever-increasing demands in the space domain and accessibility to low-cost small satellite platforms for educational and scientific projects, efforts are being made in various technology capacities including robotics and artificial intelligence in microgravity. The MIRO Center for Space Exploration and Technology Research (cSETR) prepares the development of their second nanosatellite to launch to space and it is with that opportunity that a 3-DOF robotic arm is in development to be one of the payloads in the nanosatellite. Analyses, hardware implementation, and testing demonstrate a potential positive outcome from including the payload in the nanosatellite and a deep learning ...


Identification And Optimal Linear Tracking Control Of Odu Autonomous Surface Vehicle, Nadeem Khan Jul 2018

Identification And Optimal Linear Tracking Control Of Odu Autonomous Surface Vehicle, Nadeem Khan

Mechanical & Aerospace Engineering Theses & Dissertations

Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system ...


A Neural Network Approach To Border Gateway Protocol Peer Failure Detection And Prediction, Cory B. White Dec 2009

A Neural Network Approach To Border Gateway Protocol Peer Failure Detection And Prediction, Cory B. White

Master's Theses

The size and speed of computer networks continue to expand at a rapid pace, as do the corresponding errors, failures, and faults inherent within such extensive networks. This thesis introduces a novel approach to interface Border Gateway Protocol (BGP) computer networks with neural networks to learn the precursor connectivity patterns that emerge prior to a node failure. Details of the design and construction of a framework that utilizes neural networks to learn and monitor BGP connection states as a means of detecting and predicting BGP peer node failure are presented. Moreover, this framework is used to monitor a BGP network ...


Bottom-Up Design Of Artificial Neural Network For Single-Lead Electrocardiogram Beat And Rhythm Classification, Srikanth Thiagarajan Jan 2000

Bottom-Up Design Of Artificial Neural Network For Single-Lead Electrocardiogram Beat And Rhythm Classification, Srikanth Thiagarajan

Doctoral Dissertations

Performance improvement in computerized Electrocardiogram (ECG) classification is vital to improve reliability in this life-saving technology. The non-linearly overlapping nature of the ECG classification task prevents the statistical and the syntactic procedures from reaching the maximum performance. A new approach, a neural network-based classification scheme, has been implemented in clinical ECG problems with much success. The focus, however, has been on narrow clinical problem domains and the implementations lacked engineering precision. An optimal utilization of frequency information was missing. This dissertation attempts to improve the accuracy of neural network-based single-lead (lead-II) ECG beat and rhythm classification. A bottom-up approach defined ...