Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

A Deep Machine Learning Approach For Predicting Freeway Work Zone Delay Using Big Data, Abdullah Shabarek Dec 2020

A Deep Machine Learning Approach For Predicting Freeway Work Zone Delay Using Big Data, Abdullah Shabarek

Dissertations

The introduction of deep learning and big data analytics may significantly elevate the performance of traffic speed prediction. Work zones become one of the most critical factors causing congestion impact, which reduces the mobility as well as traffic safety. A comprehensive literature review on existing work zone delay prediction models (i.e., parametric, simulation and non-parametric models) is conducted in this research. The research shows the limitations of each model. Moreover, most previous modeling approaches did not consider user delay for connected freeways when predicting traffic speed under work zone conditions. This research proposes Deep Artificial Neural Network (Deep ANN ...


Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning Aug 2020

Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning

Electrical & Computer Engineering Theses & Disssertations

Mobile devices are becoming smarter to satisfy modern user's increasing needs better, which is achieved by equipping divers of sensors and integrating the most cutting-edge Deep Learning (DL) techniques. As a sophisticated system, it is often vulnerable to multiple attacks (side-channel attacks, neural backdoor, etc.). This dissertation proposes solutions to maintain the cyber-hygiene of the DL-Based smartphone system by exploring possible vulnerabilities and developing countermeasures.

First, I actively explore possible vulnerabilities on the DL-Based smartphone system to develop proactive defense mechanisms. I discover a new side-channel attack on smartphones using the unrestricted magnetic sensor data. I demonstrate that attackers ...


Deep Learning For Remote Sensing Image Processing, Yan Lu Aug 2020

Deep Learning For Remote Sensing Image Processing, Yan Lu

Computational Modeling and Simulation Engineering Theses & Dissertations

Remote sensing images have many applications such as ground object detection, environmental change monitoring, urban growth monitoring and natural disaster damage assessment. As of 2019, there were roughly 700 satellites listing “earth observation” as their primary application. Both spatial and temporal resolutions of satellite images have improved consistently in recent years and provided opportunities in resolving fine details on the Earth's surface. In the past decade, deep learning techniques have revolutionized many applications in the field of computer vision but have not fully been explored in remote sensing image processing. In this dissertation, several state-of-the-art deep learning models have ...


A Framework For Vector-Weighted Deep Neural Networks, Carter Chiu May 2020

A Framework For Vector-Weighted Deep Neural Networks, Carter Chiu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The vast majority of advances in deep neural network research operate on the basis of a real-valued weight space. Recent work in alternative spaces have challenged and complemented this idea; for instance, the use of complex- or binary-valued weights have yielded promising and fascinating results. We propose a framework for a novel weight space consisting of vector values which we christen VectorNet. We first develop the theoretical foundations of our proposed approach, including formalizing the requisite theory for forward and backpropagating values in a vector-weighted layer. We also introduce the concept of expansion and aggregation functions for conversion between real ...


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose ...


Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez Jan 2020

Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez

Open Access Theses & Dissertations

With the ever-increasing demands in the space domain and accessibility to low-cost small satellite platforms for educational and scientific projects, efforts are being made in various technology capacities including robotics and artificial intelligence in microgravity. The MIRO Center for Space Exploration and Technology Research (cSETR) prepares the development of their second nanosatellite to launch to space and it is with that opportunity that a 3-DOF robotic arm is in development to be one of the payloads in the nanosatellite. Analyses, hardware implementation, and testing demonstrate a potential positive outcome from including the payload in the nanosatellite and a deep learning ...


Machine Intelligence For Advanced Medical Data Analysis: Manifold Learning Approach, Fereshteh S Bashiri May 2019

Machine Intelligence For Advanced Medical Data Analysis: Manifold Learning Approach, Fereshteh S Bashiri

Theses and Dissertations

In the current work, linear and non-linear manifold learning techniques, specifically Principle Component Analysis (PCA) and Laplacian Eigenmaps, are studied in detail. Their applications in medical image and shape analysis are investigated.

In the first contribution, a manifold learning-based multi-modal image registration technique is developed, which results in a unified intensity system through intensity transformation between the reference and sensed images. The transformation eliminates intensity variations in multi-modal medical scans and hence facilitates employing well-studied mono-modal registration techniques. The method can be used for registering multi-modal images with full and partial data.

Next, a manifold learning-based scale invariant global shape ...


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans ...


Image-Based Roadway Assessment Using Convolutional Neural Networks, Weilian Song Jan 2019

Image-Based Roadway Assessment Using Convolutional Neural Networks, Weilian Song

Theses and Dissertations--Computer Science

Road crashes are one of the main causes of death in the United States. To reduce the number of accidents, roadway assessment programs take a proactive approach, collecting data and identifying high-risk roads before crashes occur. However, the cost of data acquisition and manual annotation has restricted the effect of these programs. In this thesis, we propose methods to automate the task of roadway safety assessment using deep learning. Specifically, we trained convolutional neural networks on publicly available roadway images to predict safety-related metrics: the star rating score and free-flow speed. Inference speeds for our methods are mere milliseconds, enabling ...


Sensor-Based Human Activity Recognition Using Bidirectional Lstm For Closely Related Activities, Arumugam Thendramil Pavai Dec 2018

Sensor-Based Human Activity Recognition Using Bidirectional Lstm For Closely Related Activities, Arumugam Thendramil Pavai

Electronic Theses, Projects, and Dissertations

Recognizing human activities using deep learning methods has significance in many fields such as sports, motion tracking, surveillance, healthcare and robotics. Inertial sensors comprising of accelerometers and gyroscopes are commonly used for sensor based HAR. In this study, a Bidirectional Long Short-Term Memory (BLSTM) approach is explored for human activity recognition and classification for closely related activities on a body worn inertial sensor data that is provided by the UTD-MHAD dataset. The BLSTM model of this study could achieve an overall accuracy of 98.05% for 15 different activities and 90.87% for 27 different activities performed by 8 persons ...


Design And Implementation Of A Domain Specific Language For Deep Learning, Xiao Bing Huang May 2018

Design And Implementation Of A Domain Specific Language For Deep Learning, Xiao Bing Huang

Theses and Dissertations

\textit {Deep Learning} (DL) has found great success in well-diversified areas such as machine vision, speech recognition, big data analysis, and multimedia understanding recently. However, the existing state-of-the-art DL frameworks, e.g. Caffe2, Theano, TensorFlow, MxNet, Torch7, and CNTK, are programming libraries with fixed user interfaces, internal representations, and execution environments. Modifying the code of DL layers or data structure is very challenging without in-depth understanding of the underlying implementation. The optimization of the code and execution in these tools is often limited and relies on the specific DL computation graph manipulation and scheduling that lack systematic and universal strategies ...


Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz Jan 2018

Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz

Theses and Dissertations--Computer Science

Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree ...


Hierarchical Fusion Based Deep Learning Framework For Lung Nodule Classification, Kazim Sekeroglu Oct 2017

Hierarchical Fusion Based Deep Learning Framework For Lung Nodule Classification, Kazim Sekeroglu

LSU Doctoral Dissertations

Lung cancer is the leading cancer type that causes the mortality in both men and women. Computer aided detection (CAD) and diagnosis systems can play a very important role for helping the physicians in cancer treatments. This dissertation proposes a CAD framework that utilizes a hierarchical fusion based deep learning model for detection of nodules from the stacks of 2D images. In the proposed hierarchical approach, a decision is made at each level individually employing the decisions from the previous level. Further, individual decisions are computed for several perspectives of a volume of interest (VOI). This study explores three different ...


Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee Jul 2017

Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee

Electrical & Computer Engineering Theses & Disssertations

Recognition of emotional state and diagnosis of trauma related illnesses such as posttraumatic stress disorder (PTSD) using speech signals have been active research topics over the past decade. A typical emotion recognition system consists of three components: speech segmentation, feature extraction and emotion identification. Various speech features have been developed for emotional state recognition which can be divided into three categories, namely, excitation, vocal tract and prosodic. However, the capabilities of different feature categories and advanced machine learning techniques have not been fully explored for emotion recognition and PTSD diagnosis. For PTSD assessment, clinical diagnosis through structured interviews is a ...


Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose Aug 2013

Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose

Doctoral Dissertations

Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations ...