Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose ...


Automated Recognition Of Facial Affect Using Deep Neural Networks, Behzad Hasani Jan 2020

Automated Recognition Of Facial Affect Using Deep Neural Networks, Behzad Hasani

Electronic Theses and Dissertations

Automated Facial Expression Recognition (FER) has been a topic of study in the field of computer vision and machine learning for decades. In spite of efforts made to improve the accuracy of FER systems, existing methods still are not generalizable and accurate enough for use in real-world applications. Many of the traditional methods use hand-crafted (a.k.a. engineered) features for representation of facial images. However, these methods often require rigorous hyper-parameter tuning to achieve favorable results.

Recently, Deep Neural Networks (DNNs) have shown to outperform traditional methods in visual object recognition. DNNs require huge data as well as powerful ...


An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza Dec 2019

An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza

Dissertations and Theses

Food wastage is a problem that affects all demographics and regions of the world. Each year, approximately one-third of food produced for human consumption is thrown away. In an effort to track and reduce food waste in the commercial sector, some companies utilize third party devices which collect data to analyze individual contributions to the global problem. These devices track the type of food wasted (such as vegetables, fruit, boneless chicken, pasta) along with the weight. Some devices also allow the user to leave the food in a kitchen container while it is weighed, so the container weight must also ...


Visual Perception For Robotic Spatial Understanding, Jason Lawrence Owens Jan 2019

Visual Perception For Robotic Spatial Understanding, Jason Lawrence Owens

Publicly Accessible Penn Dissertations

Humans understand the world through vision without much effort. We perceive the structure, objects, and people in the environment and pay little direct attention to most of it, until it becomes useful. Intelligent systems, especially mobile robots, have no such biologically engineered vision mechanism to take for granted. In contrast, we must devise algorithmic methods of taking raw sensor data and converting it to something useful very quickly. Vision is such a necessary part of building a robot or any intelligent system that is meant to interact with the world that it is somewhat surprising we don't have off-the-shelf ...


Freeway Traffic Incident Detection Using Large Scale Traffic Data And Cameras, Pranamesh Chakraborty Jan 2019

Freeway Traffic Incident Detection Using Large Scale Traffic Data And Cameras, Pranamesh Chakraborty

Graduate Theses and Dissertations

Automatic incident detection (AID) is crucial for reducing non-recurrent congestion caused by traffic incidents. In this paper, a data-driven AID framework is proposed that can leverage large-scale historical traffic data along with the inherent topology of the traffic networks to obtain robust traffic patterns. Such traffic patterns can be compared with the real-time traffic data to detect traffic incidents in the road network. Our AID framework consists of two basic steps for traffic pattern estimation. First, we estimate a robust univariate speed threshold using historical traffic information from individual sensors. This step can be parallelized using MapReduce framework thereby making ...


Enhancing 3d Visual Odometry With Single-Camera Stereo Omnidirectional Systems, Carlos A. Jaramillo Sep 2018

Enhancing 3d Visual Odometry With Single-Camera Stereo Omnidirectional Systems, Carlos A. Jaramillo

Dissertations, Theses, and Capstone Projects

We explore low-cost solutions for efficiently improving the 3D pose estimation problem of a single camera moving in an unfamiliar environment. The visual odometry (VO) task -- as it is called when using computer vision to estimate egomotion -- is of particular interest to mobile robots as well as humans with visual impairments. The payload capacity of small robots like micro-aerial vehicles (drones) requires the use of portable perception equipment, which is constrained by size, weight, energy consumption, and processing power. Using a single camera as the passive sensor for the VO task satisfies these requirements, and it motivates the proposed solutions ...


Indoor Scene Localization To Fight Sex Trafficking In Hotels, Abigail Stylianou Dec 2016

Indoor Scene Localization To Fight Sex Trafficking In Hotels, Abigail Stylianou

Engineering and Applied Science Theses & Dissertations

Images are key to fighting sex trafficking. They are: (a) used to advertise for sex services,(b) shared among criminal networks, and (c) connect a person in an image to the place where the image was taken. This work explores the ability to link images to indoor places in order to support the investigation and prosecution of sex trafficking. We propose and develop a framework that includes a database of open-source information available on the Internet, a crowd-sourcing approach to gathering additional images, and explore a variety of matching approaches based both on hand-tuned features such as SIFT and learned ...


Vision-Based Motion For A Humanoid Robot, Khalid Abdullah Alkhulayfi Jul 2016

Vision-Based Motion For A Humanoid Robot, Khalid Abdullah Alkhulayfi

Dissertations and Theses

The overall objective of this thesis is to build an integrated, inexpensive, human-sized humanoid robot from scratch that looks and behaves like a human. More specifically, my goal is to build an android robot called Marie Curie robot that can act like a human actor in the Portland Cyber Theater in the play Quantum Debate with a known script of every robot behavior. In order to achieve this goal, the humanoid robot need to has degrees of freedom (DOF) similar to human DOFs. Each part of the Curie robot was built to achieve the goal of building a complete humanoid ...


Learning In Vision And Robotics, Daniel P. Barrett Apr 2016

Learning In Vision And Robotics, Daniel P. Barrett

Open Access Dissertations

I present my work on learning from video and robotic input. This is an important problem, with numerous potential applications. The use of machine learning makes it possible to obtain models which can handle noise and variation without explicitly programming them. It also raises the possibility of robots which can interact more seamlessly with humans rather than only exhibiting hard-coded behaviors. I will present my work in two areas: video action recognition, and robot navigation. First, I present a video action recognition method which represents actions in video by sequences of retinotopic appearance and motion detectors, learns such models automatically ...


Grounding Robot Motion In Natural Language And Visual Perception, Scott Alan Bronikowski Apr 2016

Grounding Robot Motion In Natural Language And Visual Perception, Scott Alan Bronikowski

Open Access Dissertations

The current state of the art in military and first responder ground robots involves heavy physical and cognitive burdens on the human operator while taking little to no advantage of the potential autonomy of robotic technology. The robots currently in use are rugged remote-controlled vehicles. Their interaction modalities, usually utilizing a game controller connected to a computer, require a dedicated operator who has limited capacity for other tasks.

I present research which aims to ease these burdens by incorporating multiple modes of robotic sensing into a system which allows humans to interact with robots through a natural-language interface. I conduct ...


Automated Multi-Modal Search And Rescue Using Boosted Histogram Of Oriented Gradients, Matthew A. Lienemann Dec 2015

Automated Multi-Modal Search And Rescue Using Boosted Histogram Of Oriented Gradients, Matthew A. Lienemann

Master's Theses

Unmanned Aerial Vehicles (UAVs) provides a platform for many automated tasks and with an ever increasing advances in computing, these tasks can be more complex. The use of UAVs is expanded in this thesis with the goal of Search and Rescue (SAR), where a UAV can assist fast responders to search for a lost person and relay possible search areas back to SAR teams. To identify a person from an aerial perspective, low-level Histogram of Oriented Gradients (HOG) feature descriptors are used over a segmented region, provided from thermal data, to increase classification speed. This thesis also introduces a dataset ...


3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang Aug 2014

3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang

Doctoral Dissertations

The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives.

As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in ...