Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Artificial Intelligence and Robotics

2017

Institution
Keyword
Publication

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Developing Leading And Lagging Indicators To Enhance Equipment Reliability In A Lean System, Dhanush Agara Mallesh Dec 2017

Developing Leading And Lagging Indicators To Enhance Equipment Reliability In A Lean System, Dhanush Agara Mallesh

Masters Theses

With increasing complexity in equipment, the failure rates are becoming a critical metric due to the unplanned maintenance in a production environment. Unplanned maintenance in manufacturing process is created issues with downtimes and decreasing the reliability of equipment. Failures in equipment have resulted in the loss of revenue to organizations encouraging maintenance practitioners to analyze ways to change unplanned to planned maintenance. Efficient failure prediction models are being developed to learn about the failures in advance. With this information, failures predicted can reduce the downtimes in the system and improve the throughput.

The goal of this thesis is to predict ...


Graph-Based Latent Embedding, Annotation And Representation Learning In Neural Networks For Semi-Supervised And Unsupervised Settings, Ismail Ozsel Kilinc Nov 2017

Graph-Based Latent Embedding, Annotation And Representation Learning In Neural Networks For Semi-Supervised And Unsupervised Settings, Ismail Ozsel Kilinc

Graduate Theses and Dissertations

Machine learning has been immensely successful in supervised learning with outstanding examples in major industrial applications such as voice and image recognition. Following these developments, the most recent research has now begun to focus primarily on algorithms which can exploit very large sets of unlabeled examples to reduce the amount of manually labeled data required for existing models to perform well. In this dissertation, we propose graph-based latent embedding/annotation/representation learning techniques in neural networks tailored for semi-supervised and unsupervised learning problems. Specifically, we propose a novel regularization technique called Graph-based Activity Regularization (GAR) and a novel output layer ...


Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu Nov 2017

Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu

Doctoral Dissertations

Cyber-physical systems frequently have to use massive redundancy to meet application requirements for high reliability. While such redundancy is required, it can be activated adaptively, based on the current state of the controlled plant. Most of the time the physical plant is in a state that allows for a lower level of fault-tolerance. Avoiding the continuous deployment of massive fault-tolerance will greatly reduce the workload of CPSs. In this dissertation, we demonstrate a software simulation framework (AdaFT) that can automatically generate the sub-spaces within which our adaptive fault-tolerance can be applied. We also show the theoretical benefits of AdaFT, and ...


Hierarchical Fusion Based Deep Learning Framework For Lung Nodule Classification, Kazim Sekeroglu Oct 2017

Hierarchical Fusion Based Deep Learning Framework For Lung Nodule Classification, Kazim Sekeroglu

LSU Doctoral Dissertations

Lung cancer is the leading cancer type that causes the mortality in both men and women. Computer aided detection (CAD) and diagnosis systems can play a very important role for helping the physicians in cancer treatments. This dissertation proposes a CAD framework that utilizes a hierarchical fusion based deep learning model for detection of nodules from the stacks of 2D images. In the proposed hierarchical approach, a decision is made at each level individually employing the decisions from the previous level. Further, individual decisions are computed for several perspectives of a volume of interest (VOI). This study explores three different ...


Comparing And Improving Facial Recognition Method, Brandon Luis Sierra Sep 2017

Comparing And Improving Facial Recognition Method, Brandon Luis Sierra

Electronic Theses, Projects, and Dissertations

Facial recognition is the process in which a sample face can be correctly identified by a machine amongst a group of different faces. With the never-ending need for improvement in the fields of security, surveillance, and identification, facial recognition is becoming increasingly important. Considering this importance, it is imperative that the correct faces are recognized and the error rate is as minimal as possible. Despite the wide variety of current methods for facial recognition, there is no clear cut best method. This project reviews and examines three different methods for facial recognition: Eigenfaces, Fisherfaces, and Local Binary Patterns to determine ...


Dynamic Adversarial Mining - Effectively Applying Machine Learning In Adversarial Non-Stationary Environments., Tegjyot Singh Sethi Aug 2017

Dynamic Adversarial Mining - Effectively Applying Machine Learning In Adversarial Non-Stationary Environments., Tegjyot Singh Sethi

Electronic Theses and Dissertations

While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race ...


Improving Pattern Recognition And Neural Network Algorithms With Applications To Solar Panel Energy Optimization, Ernesto Zamora Ramos Aug 2017

Improving Pattern Recognition And Neural Network Algorithms With Applications To Solar Panel Energy Optimization, Ernesto Zamora Ramos

UNLV Theses, Dissertations, Professional Papers, and Capstones

Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and ...


Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken Jul 2017

Belief-Space Planning For Resourceful Manipulation And Mobility, Dirk Ruiken

Doctoral Dissertations

Robots are increasingly expected to work in partially observable and unstructured environments. They need to select actions that exploit perceptual and motor resourcefulness to manage uncertainty based on the demands of the task and environment. The research in this dissertation makes two primary contributions. First, it develops a new concept in resourceful robot platforms called the UMass uBot and introduces the sixth and seventh in the uBot series. uBot-6 introduces multiple postural configurations that enable different modes of mobility and manipulation to meet the needs of a wide variety of tasks and environmental constraints. uBot-7 extends this with the use ...


Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee Jul 2017

Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee

Electrical & Computer Engineering Theses & Disssertations

Recognition of emotional state and diagnosis of trauma related illnesses such as posttraumatic stress disorder (PTSD) using speech signals have been active research topics over the past decade. A typical emotion recognition system consists of three components: speech segmentation, feature extraction and emotion identification. Various speech features have been developed for emotional state recognition which can be divided into three categories, namely, excitation, vocal tract and prosodic. However, the capabilities of different feature categories and advanced machine learning techniques have not been fully explored for emotion recognition and PTSD diagnosis. For PTSD assessment, clinical diagnosis through structured interviews is a ...


An Improved Algorithm For Learning To Perform Exception-Tolerant Abduction, Mengxue Zhang May 2017

An Improved Algorithm For Learning To Perform Exception-Tolerant Abduction, Mengxue Zhang

Engineering and Applied Science Theses & Dissertations

Abstract

Inference from an observed or hypothesized condition to a plausible cause or explanation for this condition is known as abduction. For many tasks, the acquisition of the necessary knowledge by machine learning has been widely found to be highly effective. However, the semantics of learned knowledge are weaker than the usual classical semantics, and this necessitates new formulations of many tasks. We focus on a recently introduced formulation of the abductive inference task that is thus adapted to the semantics of machine learning. A key problem is that we cannot expect that our causes or explanations will be perfect ...


Hexarray: A Novel Self-Reconfigurable Hardware System, Fady Hussein May 2017

Hexarray: A Novel Self-Reconfigurable Hardware System, Fady Hussein

Boise State University Theses and Dissertations

Evolvable hardware (EHW) is a powerful autonomous system for adapting and finding solutions within a changing environment. EHW consists of two main components: a reconfigurable hardware core and an evolutionary algorithm. The majority of prior research focuses on improving either the reconfigurable hardware or the evolutionary algorithm in place, but not both. Thus, current implementations suffer from being application oriented and having slow reconfiguration times, low efficiencies, and less routing flexibility. In this work, a novel evolvable hardware platform is proposed that combines a novel reconfigurable hardware core and a novel evolutionary algorithm.

The proposed reconfigurable hardware core is a ...


Music Feature Matching Using Computer Vision Algorithms, Mason Hollis May 2017

Music Feature Matching Using Computer Vision Algorithms, Mason Hollis

Computer Science and Computer Engineering Undergraduate Honors Theses

This paper seeks to establish the validity and potential benefits of using existing computer vision techniques on audio samples rather than traditional images in order to consistently and accurately identify a song of origin from a short audio clip of potentially noisy sound. To do this, the audio sample is first converted to a spectrogram image, which is used to generate SURF features. These features are compared against a database of features, which have been previously generated in a similar fashion, in order to find the best match. This algorithm has been implemented in a system that can run as ...


Target Detection With Neural Network Hardware, Hollis Bui, Garrett Massman, Nikolas Spangler, Jalen Tarvin, Luke Bechtel, Kevin Dunn, Shawn Bradford May 2017

Target Detection With Neural Network Hardware, Hollis Bui, Garrett Massman, Nikolas Spangler, Jalen Tarvin, Luke Bechtel, Kevin Dunn, Shawn Bradford

Chancellor’s Honors Program Projects

No abstract provided.


Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan Mar 2017

Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan

Masters Theses

Recent advances in cloud-based big-data technologies now makes data driven solutions feasible for increasing numbers of scientific computing applications. One such data driven solution approach is machine learning where patterns in large data sets are brought to the surface by finding complex mathematical relationships within the data. Nowcasting or short-term prediction of rainfall in a given region is an important problem in meteorology. In this thesis we explore the nowcasting problem through a data driven approach by formulating it as a machine learning problem.

State-of-the-art nowcasting systems today are based on numerical models which describe the physical processes leading to ...


Optimization Of Neural Network Architecture For Classification Of Radar Jamming Fm Signals, Alberto Soto Jan 2017

Optimization Of Neural Network Architecture For Classification Of Radar Jamming Fm Signals, Alberto Soto

Open Access Theses & Dissertations

Radar jamming signal classification is valuable when situational awareness of radar systems is sought out for timely deployment of electronic support measures. Our Thesis shows that artificial neural networks can be utilized for effective and efficient signal classification. The goal is to optimize an artificial Neural Network (NN) approach capable of distinguishing between two common radar waveforms, namely bandlimited white Gaussian jamming noise (BWGN) and the ubiquitous linearly frequency modulated (LFM) signal. This is made possible by creating a theoretical framework for NN architecture testing that leads to a high probability of detection (PD) and a low probability of false ...


Classification Of Radar Jammer Fm Signals Using A Neural Network Approach, Ariadna Estefania Mendoza Jan 2017

Classification Of Radar Jammer Fm Signals Using A Neural Network Approach, Ariadna Estefania Mendoza

Open Access Theses & Dissertations

A Neural Network (NN) used to classify radar signals is proposed for the purpose of military survivability and lethality analysis. The goal of the NN is to correctly differentiate Frequency-Modulated (FM) signals from Additive White Gaussian Noise (AWGN) using limited signal pre-processing. The FM signals used to test the NN approach are the linear or chirp FM and the power-law FM. Preliminary simulations using the moments of the signals in the time and frequency domain yielded better results in the frequency domain, suggesting that time domain training would not be as effective frequency domain training. To test this hypoThesis, we ...


A New Reinforcement Learning Algorithm With Fixed Exploration For Semi-Markov Decision Processes, Angelo Michael Encapera Jan 2017

A New Reinforcement Learning Algorithm With Fixed Exploration For Semi-Markov Decision Processes, Angelo Michael Encapera

Masters Theses

"Artificial intelligence or machine learning techniques are currently being widely applied for solving problems within the field of data analytics. This work presents and demonstrates the use of a new machine learning algorithm for solving semi-Markov decision processes (SMDPs). SMDPs are encountered in the domain of Reinforcement Learning to solve control problems in discrete-event systems. The new algorithm developed here is called iSMART, an acronym for imaging Semi-Markov Average Reward Technique. The algorithm uses a constant exploration rate, unlike its precursor R-SMART, which required exploration decay. The major difference between R-SMART and iSMART is that the latter uses, in addition ...


2d Vector Map And Database Design For Indoor Assisted Navigation, Luciano Caraciolo Albuquerque Jan 2017

2d Vector Map And Database Design For Indoor Assisted Navigation, Luciano Caraciolo Albuquerque

Dissertations and Theses

In this paper we implemented a 2D Vector Map, map editor and Database design intended to provide an efficient way to convert cad files from indoor environments to a set of vectors representing hallways, doors, exits, elevators, and other entities embedded in a floor plan, and save them in a database for use by other applications, such as assisted navigation for blind people.

A graphical application as developed in C++ to allow the user to input a CAD DXF file, process the file to automatically obtain nodes and edges, and save the nodes and edges to a database for posterior ...


Cognition-Based Approaches For High-Precision Text Mining, George John Shannon Jan 2017

Cognition-Based Approaches For High-Precision Text Mining, George John Shannon

Doctoral Dissertations

"This research improves the precision of information extraction from free-form text via the use of cognitive-based approaches to natural language processing (NLP). Cognitive-based approaches are an important, and relatively new, area of research in NLP and search, as well as linguistics. Cognitive approaches enable significant improvements in both the breadth and depth of knowledge extracted from text. This research has made contributions in the areas of a cognitive approach to automated concept recognition in.

Cognitive approaches to search, also called concept-based search, have been shown to improve search precision. Given the tremendous amount of electronic text generated in our digital ...


A Bounded Actor-Critic Algorithm For Reinforcement Learning, Ryan Jacob Lawhead Jan 2017

A Bounded Actor-Critic Algorithm For Reinforcement Learning, Ryan Jacob Lawhead

Masters Theses

"This thesis presents a new actor-critic algorithm from the domain of reinforcement learning to solve Markov and semi-Markov decision processes (or problems) in the field of airline revenue management (ARM). The ARM problem is one of control optimization in which a decision-maker must accept or reject a customer based on a requested fare. This thesis focuses on the so-called single-leg version of the ARM problem, which can be cast as a semi-Markov decision process (SMDP). Large-scale Markov decision processes (MDPs) and SMDPs suffer from the curses of dimensionality and modeling, making it difficult to create the transition probability matrices (TPMs ...