Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Compound Vision Approach For Autonomous Vehicles Navigation, Michael Mikhael Jan 2020

Compound Vision Approach For Autonomous Vehicles Navigation, Michael Mikhael

Open Access Theses & Dissertations

An analogy can be made between the sensing that occurs in simple robots and drones and that in insects and crustaceans, especially in basic navigation requirements. Thus, an approach in robots/drones based on compound eye vision could be useful. In this research, several image processing algorithms were used to detect and track moving objects starting with images upon which a grid (compound eye image) was superimposed, including contours detection, the second moments of those contours along with the grid applied to the original image, and Fourier Transforms and inverse Fourier Transforms. The latter also provide information about scene or ...


A Comprehensive And Modular Robotic Control Framework For Model-Less Control Law Development Using Reinforcement Learning For Soft Robotics, Charles Sullivan Jan 2020

A Comprehensive And Modular Robotic Control Framework For Model-Less Control Law Development Using Reinforcement Learning For Soft Robotics, Charles Sullivan

Open Access Theses & Dissertations

Soft robotics is a growing field in robotics research. Heavily inspired by biological systems, these robots are made of softer, non-linear, materials such as elastomers and are actuated using several novel methods, from fluidic actuation channels to shape changing materials such as electro-active polymers. Highly non-linear materials make modeling difficult, and sensors are still an area of active research. These issues have rendered typical control and modeling techniques often inadequate for soft robotics. Reinforcement learning is a branch of machine learning that focuses on model-less control by mapping states to actions that maximize a specific reward signal. Reinforcement learning has ...


Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez Jan 2020

Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez

Open Access Theses & Dissertations

With the ever-increasing demands in the space domain and accessibility to low-cost small satellite platforms for educational and scientific projects, efforts are being made in various technology capacities including robotics and artificial intelligence in microgravity. The MIRO Center for Space Exploration and Technology Research (cSETR) prepares the development of their second nanosatellite to launch to space and it is with that opportunity that a 3-DOF robotic arm is in development to be one of the payloads in the nanosatellite. Analyses, hardware implementation, and testing demonstrate a potential positive outcome from including the payload in the nanosatellite and a deep learning ...


Dedicated Hardware For Machine/Deep Learning: Domain Specific Architectures, Angel Izael Solis Jan 2019

Dedicated Hardware For Machine/Deep Learning: Domain Specific Architectures, Angel Izael Solis

Open Access Theses & Dissertations

Artificial intelligence has come a very long way from being a mere spectacle on the silver screen in the 1920s [Hml18]. As artificial intelligence continues to evolve, and we begin to develop more sophisticated Artificial Neural Networks, the need for specialized and more efficient machines (less computational strain while maintaining the same performance results) becomes increasingly evident. Though these “new” techniques, such as Multilayer Perceptron’s, Convolutional Neural Networks and Recurrent Neural Networks, may seem as if they are on the cutting edge of technology, many of these ideas are over 60 years old! However, many of these earlier models ...


Optimization Of Neural Network Architecture For Classification Of Radar Jamming Fm Signals, Alberto Soto Jan 2017

Optimization Of Neural Network Architecture For Classification Of Radar Jamming Fm Signals, Alberto Soto

Open Access Theses & Dissertations

Radar jamming signal classification is valuable when situational awareness of radar systems is sought out for timely deployment of electronic support measures. Our Thesis shows that artificial neural networks can be utilized for effective and efficient signal classification. The goal is to optimize an artificial Neural Network (NN) approach capable of distinguishing between two common radar waveforms, namely bandlimited white Gaussian jamming noise (BWGN) and the ubiquitous linearly frequency modulated (LFM) signal. This is made possible by creating a theoretical framework for NN architecture testing that leads to a high probability of detection (PD) and a low probability of false ...


Classification Of Radar Jammer Fm Signals Using A Neural Network Approach, Ariadna Estefania Mendoza Jan 2017

Classification Of Radar Jammer Fm Signals Using A Neural Network Approach, Ariadna Estefania Mendoza

Open Access Theses & Dissertations

A Neural Network (NN) used to classify radar signals is proposed for the purpose of military survivability and lethality analysis. The goal of the NN is to correctly differentiate Frequency-Modulated (FM) signals from Additive White Gaussian Noise (AWGN) using limited signal pre-processing. The FM signals used to test the NN approach are the linear or chirp FM and the power-law FM. Preliminary simulations using the moments of the signals in the time and frequency domain yielded better results in the frequency domain, suggesting that time domain training would not be as effective frequency domain training. To test this hypoThesis, we ...


Novel Classification Of Slow Movement Objects In Urban Traffic Environments Using Wideband Pulse Doppler Radar, Berta Rodriguez Hervas Jan 2015

Novel Classification Of Slow Movement Objects In Urban Traffic Environments Using Wideband Pulse Doppler Radar, Berta Rodriguez Hervas

Open Access Theses & Dissertations

Every year thousands of people are involved in traffic accidents, some of which are fatal. An important percentage of these fatalities are caused by human error, which could be prevented by increasing the awareness of drivers and the autonomy of vehicles. Since driver assistance systems have the potential to positively impact tens of millions of people, the purpose of this research is to study the micro-Doppler characteristics of vulnerable urban traffic components, i.e. pedestrians and bicyclists, based on information obtained from radar backscatter, and to develop a classification technique that allows automatic target recognition with a vehicle integrated system ...


The Application Of Fuzzy Granular Computing For The Analysis Of Human Dynamic Behavior In 3d Space, Murad Mohammad Alaqtash Jan 2012

The Application Of Fuzzy Granular Computing For The Analysis Of Human Dynamic Behavior In 3d Space, Murad Mohammad Alaqtash

Open Access Theses & Dissertations

Human dynamic behavior in space is very complex in that it involves many physical, perceptual and motor aspects. It is tied together at a sensory level by linkages between vestibular, visual and somatosensory information that develop through experience of inertial and gravitational reaction forces. Coordinated movement emerges from the interplay among descending output from the central nervous system, sensory input from the body and environment, muscle dynamics, and the emergent dynamics of the whole neuromusculoskeletal system.

There have been many attempts to directly capture the activities of the neuronal system in human locomotion without the ability to clarify how the ...