Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Predicting Disease Progression Using Deep Recurrent Neural Networks And Longitudinal Electronic Health Record Data, Seunghwan Kim May 2020

Predicting Disease Progression Using Deep Recurrent Neural Networks And Longitudinal Electronic Health Record Data, Seunghwan Kim

Engineering and Applied Science Theses & Dissertations

Electronic Health Records (EHR) are widely adopted and used throughout healthcare systems and are able to collect and store longitudinal information data that can be used to describe patient phenotypes. From the underlying data structures used in the EHR, discrete data can be extracted and analyzed to improve patient care and outcomes via tasks such as risk stratification and prospective disease management. Temporality in EHR is innately present given the nature of these data, however, and traditional classification models are limited in this context by the cross- sectional nature of training and prediction processes. Finding temporal patterns in EHR is ...


Differential Estimation Of Audiograms Using Gaussian Process Active Model Selection, Trevor Larsen May 2019

Differential Estimation Of Audiograms Using Gaussian Process Active Model Selection, Trevor Larsen

Engineering and Applied Science Theses & Dissertations

Classical methods for psychometric function estimation either require excessive resources to perform, as in the method of constants, or produce only a low resolution approximation of the target psychometric function, as in adaptive staircase or up-down procedures. This thesis makes two primary contributions to the estimation of the audiogram, a clinically relevant psychometric function estimated by querying a patient’s for audibility of a collection of tones. First, it covers the implementation of a Gaussian process model for learning an audiogram using another audiogram as a prior belief to speed up the learning procedure. Second, it implements a use case ...


An Improved Algorithm For Learning To Perform Exception-Tolerant Abduction, Mengxue Zhang May 2017

An Improved Algorithm For Learning To Perform Exception-Tolerant Abduction, Mengxue Zhang

Engineering and Applied Science Theses & Dissertations

Abstract

Inference from an observed or hypothesized condition to a plausible cause or explanation for this condition is known as abduction. For many tasks, the acquisition of the necessary knowledge by machine learning has been widely found to be highly effective. However, the semantics of learned knowledge are weaker than the usual classical semantics, and this necessitates new formulations of many tasks. We focus on a recently introduced formulation of the abductive inference task that is thus adapted to the semantics of machine learning. A key problem is that we cannot expect that our causes or explanations will be perfect ...


Indoor Scene Localization To Fight Sex Trafficking In Hotels, Abigail Stylianou Dec 2016

Indoor Scene Localization To Fight Sex Trafficking In Hotels, Abigail Stylianou

Engineering and Applied Science Theses & Dissertations

Images are key to fighting sex trafficking. They are: (a) used to advertise for sex services,(b) shared among criminal networks, and (c) connect a person in an image to the place where the image was taken. This work explores the ability to link images to indoor places in order to support the investigation and prosecution of sex trafficking. We propose and develop a framework that includes a database of open-source information available on the Internet, a crowd-sourcing approach to gathering additional images, and explore a variety of matching approaches based both on hand-tuned features such as SIFT and learned ...


Applying Bayesian Machine Learning Methods To Theoretical Surface Science, Shane Carr Dec 2015

Applying Bayesian Machine Learning Methods To Theoretical Surface Science, Shane Carr

Engineering and Applied Science Theses & Dissertations

Machine learning is a rapidly evolving field in computer science with increasingly many applications to other domains. In this thesis, I present a Bayesian machine learning approach to solving a problem in theoretical surface science: calculating the preferred active site on a catalyst surface for a given adsorbate molecule. I formulate the problem as a low-dimensional objective function. I show how the objective function can be approximated into a certain confidence interval using just one iteration of the self-consistent field (SCF) loop in density functional theory (DFT). I then use Bayesian optimization to perform a global search for the solution ...