Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Sensor-Based Human Activity Recognition Using Bidirectional Lstm For Closely Related Activities, Arumugam Thendramil Pavai Dec 2018

Sensor-Based Human Activity Recognition Using Bidirectional Lstm For Closely Related Activities, Arumugam Thendramil Pavai

Electronic Theses, Projects, and Dissertations

Recognizing human activities using deep learning methods has significance in many fields such as sports, motion tracking, surveillance, healthcare and robotics. Inertial sensors comprising of accelerometers and gyroscopes are commonly used for sensor based HAR. In this study, a Bidirectional Long Short-Term Memory (BLSTM) approach is explored for human activity recognition and classification for closely related activities on a body worn inertial sensor data that is provided by the UTD-MHAD dataset. The BLSTM model of this study could achieve an overall accuracy of 98.05% for 15 different activities and 90.87% for 27 different activities performed by 8 persons ...


Comparing And Improving Facial Recognition Method, Brandon Luis Sierra Sep 2017

Comparing And Improving Facial Recognition Method, Brandon Luis Sierra

Electronic Theses, Projects, and Dissertations

Facial recognition is the process in which a sample face can be correctly identified by a machine amongst a group of different faces. With the never-ending need for improvement in the fields of security, surveillance, and identification, facial recognition is becoming increasingly important. Considering this importance, it is imperative that the correct faces are recognized and the error rate is as minimal as possible. Despite the wide variety of current methods for facial recognition, there is no clear cut best method. This project reviews and examines three different methods for facial recognition: Eigenfaces, Fisherfaces, and Local Binary Patterns to determine ...