Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Artificial Intelligence and Robotics

Computer Science and Computer Engineering Undergraduate Honors Theses

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

A Capacitive Sensing Gym Mat For Exercise Classification & Tracking, Adam Goertz May 2020

A Capacitive Sensing Gym Mat For Exercise Classification & Tracking, Adam Goertz

Computer Science and Computer Engineering Undergraduate Honors Theses

Effective monitoring of adherence to at-home exercise programs as prescribed by physiotherapy protocols is essential to promoting effective rehabilitation and therapeutic interventions. Currently physical therapists and other health professionals have no reliable means of tracking patients' progress in or adherence to a prescribed regimen. This project aims to develop a low-cost, privacy-conserving means of monitoring at-home exercise activity using a gym mat equipped with an array of capacitive sensors. The ability of the mat to classify different types of exercises was evaluated using several machine learning models trained on an existing dataset of physiotherapy exercises.


Music Feature Matching Using Computer Vision Algorithms, Mason Hollis May 2017

Music Feature Matching Using Computer Vision Algorithms, Mason Hollis

Computer Science and Computer Engineering Undergraduate Honors Theses

This paper seeks to establish the validity and potential benefits of using existing computer vision techniques on audio samples rather than traditional images in order to consistently and accurately identify a song of origin from a short audio clip of potentially noisy sound. To do this, the audio sample is first converted to a spectrogram image, which is used to generate SURF features. These features are compared against a database of features, which have been previously generated in a similar fashion, in order to find the best match. This algorithm has been implemented in a system that can run as ...


Inferring Intrinsic Beliefs Of Digital Images Using A Deep Autoencoder, Seok H. Lee May 2016

Inferring Intrinsic Beliefs Of Digital Images Using A Deep Autoencoder, Seok H. Lee

Computer Science and Computer Engineering Undergraduate Honors Theses

Training a system of artificial neural networks on digital images is a big challenge. Often times digital images contain a large amount of information and values for artificial neural networks to understand. In this work, the inference model is proposed in order to absolve this problem. The inference model is composed of a parameterized autoencoder that endures the loss of information caused by the rescaling of images and transition model that predicts the effect of an action on the observation. To test the inference model, the images of a moving robotic arm were given as the data set. The inference ...