Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

An Investigation Into Multi-View Error Correcting Output Code Classifiers Applied To Organ Tissue Classification, Daniel Alvarez Aug 2020

An Investigation Into Multi-View Error Correcting Output Code Classifiers Applied To Organ Tissue Classification, Daniel Alvarez

UNLV Theses, Dissertations, Professional Papers, and Capstones

Large amounts of data is being generated constantly each day, so much data that it is difficult to find patterns in order to predict outcomes and make decisions for both humans and machines alike. It would be useful if this data could be simplified using machine learning techniques. For example, biological cell identity is dependent on many factors tied to genetic processes. Such factors include proteins, gene transcription, and gene methylation. Each of these factors are highly complex mechanism with immense amounts of data. Simplifying these can then be helpful in finding patterns in them. Error-Correcting Output Codes (ECOC) does ...


A Framework For Vector-Weighted Deep Neural Networks, Carter Chiu May 2020

A Framework For Vector-Weighted Deep Neural Networks, Carter Chiu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The vast majority of advances in deep neural network research operate on the basis of a real-valued weight space. Recent work in alternative spaces have challenged and complemented this idea; for instance, the use of complex- or binary-valued weights have yielded promising and fascinating results. We propose a framework for a novel weight space consisting of vector values which we christen VectorNet. We first develop the theoretical foundations of our proposed approach, including formalizing the requisite theory for forward and backpropagating values in a vector-weighted layer. We also introduce the concept of expansion and aggregation functions for conversion between real ...


Multi-Resolution Spatio-Temporal Change Analyses Of Hydro-Climatological Variables In Association With Large-Scale Oceanic-Atmospheric Climate Signals, Kazi Ali Tamaddun May 2019

Multi-Resolution Spatio-Temporal Change Analyses Of Hydro-Climatological Variables In Association With Large-Scale Oceanic-Atmospheric Climate Signals, Kazi Ali Tamaddun

UNLV Theses, Dissertations, Professional Papers, and Capstones

The primary objective of the work presented in this dissertation was to evaluate the change patterns, i.e., a gradual change known as the trend, and an abrupt change known as the shift, of multiple hydro-climatological variables, namely, streamflow, snow water equivalent (SWE), temperature, precipitation, and potential evapotranspiration (PET), in association with the large-scale oceanic-atmospheric climate signals. Moreover, both observed datasets and modeled simulations were used to evaluate such change patterns to assess the efficacy of the modeled datasets in emulating the observed trends and shifts under the influence of uncertainties and inconsistencies. A secondary objective of this study was ...


The Affective Perceptual Model: Enhancing Communication Quality For Persons With Pimd, Jadin Tredup May 2019

The Affective Perceptual Model: Enhancing Communication Quality For Persons With Pimd, Jadin Tredup

UNLV Theses, Dissertations, Professional Papers, and Capstones

Methods for prolonged compassionate care for persons with Profound Intellectual and Multiple Disabilities (PIMD) require a rotating cast of import people in the subjects life in order to facilitate interaction with the external environment. As subjects continue to age, dependency on these people increases with complexity of communications while the quality of communication decreases. It is theorized that a machine learning (ML) system could replicate the attuning process and replace these people to promote independence. This thesis extends this idea to develop a conceptual and formal model and system prototype.

The main contributions of this thesis are: (1) proposal of ...


Classification Of Vegetation In Aerial Imagery Via Neural Network, Gevand Balayan May 2019

Classification Of Vegetation In Aerial Imagery Via Neural Network, Gevand Balayan

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis focuses on the task of trying to find a Neural Network that is best suited for identifying vegetation from aerial imagery. The goal is to find a way to quickly classify items in an image as highly likely to be vegetation(trees, grass, bushes and shrubs) and then interpolate that data and use it to mark sections of an image as vegetation. This has practical applications as well. The main motivation of this work came from the effort that our town takes in conserving water. By creating an AI that can easily recognize plants, we can better monitor ...


Improving Pattern Recognition And Neural Network Algorithms With Applications To Solar Panel Energy Optimization, Ernesto Zamora Ramos Aug 2017

Improving Pattern Recognition And Neural Network Algorithms With Applications To Solar Panel Energy Optimization, Ernesto Zamora Ramos

UNLV Theses, Dissertations, Professional Papers, and Capstones

Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and ...


Efficient Algorithms For Clustering Polygonal Obstacles, Sabbir Kumar Manandhar May 2016

Efficient Algorithms For Clustering Polygonal Obstacles, Sabbir Kumar Manandhar

UNLV Theses, Dissertations, Professional Papers, and Capstones

Clustering a set of points in Euclidean space is a well-known problem having applications in pattern recognition, document image analysis, big-data analytics, and robotics. While there are a lot of research publications for clustering point objects, only a few articles have been reported for clustering a given distribution of obstacles. In this thesis we examine the development of efficient algorithms for clustering a given set of convex obstacles in the 2D plane. One of the methods presented in this work uses a Voronoi diagram to extract obstacle clusters. We also consider the implementation issues of point/obstacle clustering algorithms.


Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder Dec 2014

Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder

UNLV Theses, Dissertations, Professional Papers, and Capstones

Actuators determine the performance of robotic systems at the most intimate of levels. As a result, much work has been done to assess the performance of different actuator systems. However, biomimetics has not previously been utilized as a pretext for tuning a series elastic actuator system with the purpose of designing an empirical testing platform. Thus, an artificial muscle tendon system has been developed in order to assess the performance of two distinct actuator types: (1) direct current electromagnetic motors and (2) ultrasonic rotary piezoelectric motors. Because the design of the system takes advantage of biomimetic operating principles such as ...