Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Deep Siamese Neural Networks For Facial Expression Recognition In The Wild, Wassan Hayale Jan 2020

Deep Siamese Neural Networks For Facial Expression Recognition In The Wild, Wassan Hayale

Electronic Theses and Dissertations

The variation of facial images in the wild conditions due to head pose, face illumination, and occlusion can significantly affect the Facial Expression Recognition (FER) performance. Moreover, between subject variation introduced by age, gender, ethnic backgrounds, and identity can also influence the FER performance. This Ph.D. dissertation presents a novel algorithm for end-to-end facial expression recognition, valence and arousal estimation, and visual object matching based on deep Siamese Neural Networks to handle the extreme variation that exists in a facial dataset. In our main Siamese Neural Networks for facial expression recognition, the first network represents the classification framework, where ...


Automated Recognition Of Facial Affect Using Deep Neural Networks, Behzad Hasani Jan 2020

Automated Recognition Of Facial Affect Using Deep Neural Networks, Behzad Hasani

Electronic Theses and Dissertations

Automated Facial Expression Recognition (FER) has been a topic of study in the field of computer vision and machine learning for decades. In spite of efforts made to improve the accuracy of FER systems, existing methods still are not generalizable and accurate enough for use in real-world applications. Many of the traditional methods use hand-crafted (a.k.a. engineered) features for representation of facial images. However, these methods often require rigorous hyper-parameter tuning to achieve favorable results.

Recently, Deep Neural Networks (DNNs) have shown to outperform traditional methods in visual object recognition. DNNs require huge data as well as powerful ...


Deep Reinforcement Learning For The Optimization Of Building Energy Control And Management, Jun Hao Jan 2020

Deep Reinforcement Learning For The Optimization Of Building Energy Control And Management, Jun Hao

Electronic Theses and Dissertations

Most of the current game-theoretic demand-side management methods focus primarily on the scheduling of home appliances, and the related numerical experiments are analyzed under various scenarios to achieve the corresponding Nash-equilibrium (NE) and optimal results. However, not much work is conducted for academic or commercial buildings. The methods for optimizing academic-buildings are distinct from the optimal methods for home appliances. In my study, we address a novel methodology to control the operation of heating, ventilation, and air conditioning system (HVAC).

We assume that each building in our campus is equipped with smart meter and communication system which is envisioned in ...


Satellite Constellation Deployment And Management, Joseph Ryan Kopacz Jan 2020

Satellite Constellation Deployment And Management, Joseph Ryan Kopacz

Electronic Theses and Dissertations

This paper will review results and discuss a new method to address the deployment and management of a satellite constellation. The first two chapters will explorer the use of small satellites, and some of the advances in technology that have enabled small spacecraft to maintain modern performance requirements in incredibly small packages.

The third chapter will address the multiple-objective optimization problem for a global persistent coverage constellation of communications spacecraft in Low Earth Orbit. A genetic algorithm was implemented in MATLAB to explore the design space – 288 trillion possibilities – utilizing the Satellite Tool Kit (STK) software developers kit. STK and ...


Facial Action Unit Detection With Deep Convolutional Neural Networks, Siddhesh Padwal Jan 2020

Facial Action Unit Detection With Deep Convolutional Neural Networks, Siddhesh Padwal

Electronic Theses and Dissertations

The facial features are the most important tool to understand an individual's state of mind. Automated recognition of facial expressions and particularly Facial Action Units defined by Facial Action Coding System (FACS) is challenging research problem in the field of computer vision and machine learning. Researchers are working on deep learning algorithms to improve state of the art in the area. Automated recognition of facial action units has man applications ranging from developmental psychology to human robot interface design where companies are using this technology to improve their consumer devices (like unlocking phone) and for entertainment like FaceApp. Recent ...


Development Of A Locomotion And Balancing Strategy For Humanoid Robots, Emile Bahdi Jan 2018

Development Of A Locomotion And Balancing Strategy For Humanoid Robots, Emile Bahdi

Electronic Theses and Dissertations

The locomotion ability and high mobility are the most distinguished features of humanoid robots. Due to the non-linear dynamics of walking, developing and controlling the locomotion of humanoid robots is a challenging task. In this thesis, we study and develop a walking engine for the humanoid robot, NAO, which is the official robotic platform used in the RoboCup Spl. Aldebaran Robotics, the manufacturing company of NAO provides a walking module that has disadvantages, such as being a black box that does not provide control of the gait as well as the robot walk with a bent knee. The latter disadvantage ...


Developing An Affect-Aware Rear-Projected Robotic Agent, Ali Mollahosseini Jan 2018

Developing An Affect-Aware Rear-Projected Robotic Agent, Ali Mollahosseini

Electronic Theses and Dissertations

Social (or Sociable) robots are designed to interact with people in a natural and interpersonal manner. They are becoming an integrated part of our daily lives and have achieved positive outcomes in several applications such as education, health care, quality of life, entertainment, etc. Despite significant progress towards the development of realistic social robotic agents, a number of problems remain to be solved. First, current social robots either lack enough ability to have deep social interaction with human, or they are very expensive to build and maintain. Second, current social robots have yet to reach the full emotional and social ...


Implementation Of An Air Supply Unit Control Scheme For The Uc2av (Unmanned Circulation Control Aerial Vehicle), Cameron Rosen Jan 2016

Implementation Of An Air Supply Unit Control Scheme For The Uc2av (Unmanned Circulation Control Aerial Vehicle), Cameron Rosen

Electronic Theses and Dissertations

The expanded prevalence of Unmanned Aerial Vehicles (UAVs) in recent years has created many opportunities to research novel applications for their use, enabled by the reduced cost, mission flexibility, and reduced risk that small-scale unmanned platforms provide in comparison to larger aircraft. Despite the versatility of unmanned aviation, limitations on payload size and weight, fuel and power capacity, and takeoff and landing infrastructure can restrict UAV applications, and have created a need for lift augmenting technologies that can reduce the impact of these limitations. Circulation Control (CC) is an active flow technique that has been proven as a method for ...


Reducing Communication Delay Variability For A Group Of Robots, Goncalo Martins Jan 2013

Reducing Communication Delay Variability For A Group Of Robots, Goncalo Martins

Electronic Theses and Dissertations

A novel architecture is presented for reducing communication delay variability for a group of robots. This architecture relies on using three components: a microprocessor architecture that allows deterministic real-time tasks; an event-based communication protocol in which nodes transmit in a TDMA fashion, without the need of global clock synchronization techniques; and a novel communication scheme that enables deterministic communications by allowing senders to transmit without regard for the state of the medium or coordination with other senders, and receivers can tease apart messages sent simultaneously with a high probability of success. This approach compared to others, allows simultaneous communications without ...


Simulation, Application, And Resilience Of An Organic Neuromorphic Architecture, Made With Organic Bistable Devices And Organic Field Effect Transistors, Robert A. Nawrocki Jan 2011

Simulation, Application, And Resilience Of An Organic Neuromorphic Architecture, Made With Organic Bistable Devices And Organic Field Effect Transistors, Robert A. Nawrocki

Electronic Theses and Dissertations

This thesis presents work done simulating a type of organic neuromorphic architecture, modeled after Artificial Neural Network, and termed Synthetic Neural Network, or SNN. The first major contribution of this thesis is development of a single-transistor-single-organic-bistable-device-per-input circuit that approximates behavior of an artificial neuron. The efficacy of this design is validated by comparing the behavior of a single synthetic neuron to that of an artificial neuron as well as two examples involving a network of synthetic neurons. The analysis utilizes electrical characteristics of polymer electronic elements, namely Organic Bistable Device and Organic Field Effect Transistor, created in the laboratory at ...