Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Offline And Online Density Estimation For Large High-Dimensional Data, Aref Majdara Jan 2018

Offline And Online Density Estimation For Large High-Dimensional Data, Aref Majdara

Dissertations, Master's Theses and Master's Reports

Density estimation has wide applications in machine learning and data analysis techniques including clustering, classification, multimodality analysis, bump hunting and anomaly detection. In high-dimensional space, sparsity of data in local neighborhood makes many of parametric and nonparametric density estimation methods mostly inefficient.

This work presents development of computationally efficient algorithms for high-dimensional density estimation, based on Bayesian sequential partitioning (BSP). Copula transform is used to separate the estimation of marginal and joint densities, with the purpose of reducing the computational complexity and estimation error. Using this separation, a parallel implementation of the density estimation algorithm on a 4-core CPU is ...


Intelligent And Secure Underwater Acoustic Communication Networks, Chaofeng Wang Jan 2018

Intelligent And Secure Underwater Acoustic Communication Networks, Chaofeng Wang

Dissertations, Master's Theses and Master's Reports

Underwater acoustic (UWA) communication networks are promising techniques for medium- to long-range wireless information transfer in aquatic applications. The harsh and dynamic water environment poses grand challenges to the design of UWA networks. This dissertation leverages the advances in machine learning and signal processing to develop intelligent and secure UWA communication networks. Three research topics are studied: 1) reinforcement learning (RL)-based adaptive transmission in UWA channels; 2) reinforcement learning-based adaptive trajectory planning for autonomous underwater vehicles (AUVs) in under-ice environments; 3) signal alignment to secure underwater coordinated multipoint (CoMP) transmissions.

First, a RL-based algorithm is developed for adaptive transmission ...


Wildfire Emissions In The Context Of Global Change And The Implications For Mercury Pollution, Aditya Kumar Jan 2018

Wildfire Emissions In The Context Of Global Change And The Implications For Mercury Pollution, Aditya Kumar

Dissertations, Master's Theses and Master's Reports

Wildfires are episodic disturbances that exert a significant influence on the Earth system. They emit substantial amounts of atmospheric pollutants, which can impact atmospheric chemistry/composition and the Earth’s climate at the global and regional scales. This work presents a collection of studies aimed at better estimating wildfire emissions of atmospheric pollutants, quantifying their impacts on remote ecosystems and determining the implications of 2000s-2050s global environmental change (land use/land cover, climate) for wildfire emissions following the Intergovernmental Panel on Climate Change (IPCC) A1B socioeconomic scenario.

A global fire emissions model is developed to compile global wildfire emission inventories ...


Resource Optimization In Wireless Sensor Networks For An Improved Field Coverage And Cooperative Target Tracking, Husam Sweidan Jan 2018

Resource Optimization In Wireless Sensor Networks For An Improved Field Coverage And Cooperative Target Tracking, Husam Sweidan

Dissertations, Master's Theses and Master's Reports

There are various challenges that face a wireless sensor network (WSN) that mainly originate from the limited resources a sensor node usually has. A sensor node often relies on a battery as a power supply which, due to its limited capacity, tends to shorten the life-time of the node and the network as a whole. Other challenges arise from the limited capabilities of the sensors/actuators a node is equipped with, leading to complication like a poor coverage of the event, or limited mobility in the environment. This dissertation deals with the coverage problem as well as the limited power ...


Representation And Analysis Of Multi-Modal, Nonuniform Time Series Data: An Application To Survival Prognosis Of Oncology Patients In An Outpatient Setting, Jennifer Winikus Jan 2016

Representation And Analysis Of Multi-Modal, Nonuniform Time Series Data: An Application To Survival Prognosis Of Oncology Patients In An Outpatient Setting, Jennifer Winikus

Dissertations, Master's Theses and Master's Reports

The representation of nonuniform, multi-modal, time-limited time series data is complex and explored through the use of discrete representation, dimensionality reduction with segmentation based techniques, and with behavioral representation approaches. These explorations are done with a focus on an outpatient oncology setting with the classification and regression analysis being used for length of survival prognosis. Each decision of representation and analysis is not independent, with implications of each decision in method for how the data is represented and then which analysis technique is used. One unique aspect of the work is the use of outpatient clinical data for patients, which ...