Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Aerospace Engineering

Institution
Keyword
Publication Year
Publication
File Type

Articles 61 - 90 of 4454

Full-Text Articles in Engineering

Development, Experimental Validation, And Progressive Failure Modeling Of An Ultra-Thin High Stiffness Deployable Composite Boom For In-Space Applications, Jimesh D. Bhagatji Aug 2023

Development, Experimental Validation, And Progressive Failure Modeling Of An Ultra-Thin High Stiffness Deployable Composite Boom For In-Space Applications, Jimesh D. Bhagatji

Mechanical & Aerospace Engineering Theses & Dissertations

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This research focuses on fabrication, experimental testing, and progressive failure modelling to study the deformation of an ultra-thin composite beam. The research study examines deformation modes of a boom under repetitive pure bending loads using 4-point bending setup. The material and …


Data-Driven Predictive Modeling To Enhance Search Efficiency Of Glowworm-Inspired Robotic Swarms In Multiple Emission Source Localization Tasks, Payal Nandi Aug 2023

Data-Driven Predictive Modeling To Enhance Search Efficiency Of Glowworm-Inspired Robotic Swarms In Multiple Emission Source Localization Tasks, Payal Nandi

Mechanical & Aerospace Engineering Theses & Dissertations

In time-sensitive search and rescue applications, a team of multiple mobile robots broadens the scope of operational capabilities. Scaling multi-robot systems (< 10 agents) to larger robot teams (10 – 100 agents) using centralized coordination schemes becomes computationally intractable during runtime. One solution to this problem is inspired by swarm intelligence principles found in nature, offering the benefits of decentralized control, fault tolerance to individual failures, and self-organizing adaptability. Glowworm swarm optimization (GSO) is unique among swarm-based algorithms as it simultaneously focuses on searching for multiple targets. This thesis presents GPR-GSO—a modification to the GSO algorithm that incorporates Gaussian Process Regression (GPR) based data-driven predictive modeling—to improve the search efficiency of robotic swarms in multiple emission source localization tasks. The problem formulation and methods are presented, followed by numerical simulations to illustrate the working of the algorithm. Results from a comparative analysis show that the GPR-GSO algorithm exceeds the performance of the benchmark GSO algorithm on evaluation metrics of swarm size, search completion time, and travel distance.


Cislunar Navigation Techniques And Navigation Performance Optimization, Quinn P. Moon Aug 2023

Cislunar Navigation Techniques And Navigation Performance Optimization, Quinn P. Moon

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Nova-C is a lunar lander developed by the private company Intuitive Machines to deliver commercial payloads to the Moon. The IM-1 mission set for 2023 will launch and land the Nova-C near the Moon's south pole. In this research, various navigation techniques are explored to determine the lander's position and velocity during key segments. This process is studied for key mission events including trajectory correction maneuvers (TCMs), lunar orbit insertion (LOI), and descent orbit insertion (DOI). Each mission segment, referred to as an Orbit Determination Segment (OD), is analyzed with three different navigation techniques: Monte Carlo Analysis, Linear Covariance Analysis, …


A Comparative Study Of Vinti-Based Orbit Propagation And Estimation For Cubesats In Very Low Earth Orbits, Ethan Michael Senecal Aug 2023

A Comparative Study Of Vinti-Based Orbit Propagation And Estimation For Cubesats In Very Low Earth Orbits, Ethan Michael Senecal

Mechanical & Aerospace Engineering Theses & Dissertations

In recent years, there has been a growing interest in CubeSats and very low Earth orbit (VLEO) space missions. Mission SeaLion, a collaborative CubeSat mission between Old Dominion University, the U.S. Coast Guard Academy, and U.S. Air Force Institute of Technology, planned to launch a 3U CubeSat into VLEO. The VLEO mission is a particularly challenging environment for navigation and orbit propagation because drag introduces a significant perturbation for orbit models such as SGP4. Additionally, mission requirements left no capacity for attitude determination or control, further reducing knowledge of drag behavior of the satellite in flight. This deficiency is a …


Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey Aug 2023

Design And Implementation Of A Launching Method For Free To Oscillate Dynamic Stability Testing, Kristen M. Carey

Mechanical & Aerospace Engineering Theses & Dissertations

Magnetic Suspension and Balance Systems (MSBS) allow for static, forced oscillation and free to oscillate dynamic stability testing in a wind tunnel without the need for a physical support. The objectives of study are to assist in the application of the free to oscillate testing method in an MSBS to determine dynamic stability characteristics for various re-entry capsule designs.

This thesis discusses the development and testing of a launching method called the grabber for use in the MSBS Subsonic Wind Tunnel at NASA Langley Research Center. Aerodynamic tests were run to support the use of this method and compare the …


Effect Of Morphology And An Upstream Tall Building On A Street Canyon Flow, Haoran Du Jul 2023

Effect Of Morphology And An Upstream Tall Building On A Street Canyon Flow, Haoran Du

Electronic Thesis and Dissertation Repository

The effects of the morphological model and the existence of an upstream tall building on the turbulent street canyon flow and the overlying boundary layer are investigated in a wind tunnel, using Stereoscopic Particle Image Velocimetry (S-PIV) measurements. The velocity variances, Reynolds shear stress, and turbulent kinetic energy are found to be larger than in a similar idealized street canyon model. Increasing building height results in a decrease in vertical mass fluxes across the opening of the canyon, at least in the canyon portion directly downstream of the building. The interaction between the large-scale structures in the overlying boundary layer …


The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow Jul 2023

The Influence Of Mixing Duct Length And Phase Of Flight On Wall Temperatures Of A Rocket Based Combined Cycle Engine In Ejector And Air-Augmented Modes, Jonathan Grow

Doctoral Dissertations and Master's Theses

Rocket Based Combined Cycle (RBCC) engines have been theorized as a possible means of powering launch vehicles and high-speed atmospheric vehicles. By incorporating aspects of both air-breathing and rocket propulsion, RBCC engines promise up to a 230 % increase in specific impulse over traditional chemical rocket propulsion by entraining a secondary flow of atmospheric air and mixing it with the exhaust of a rocket motor. Students within the Embry-Riddle Future Space Explorers and Developers Society (ERFSEDS) identified a
problem of excessive heating and structural failure of the mixing duct during launch and transonic flight of a student-built flight test vehicle. …


Neural Network Models For Generating Synthetic Flight Data, Nathaniel Sisson Jul 2023

Neural Network Models For Generating Synthetic Flight Data, Nathaniel Sisson

Doctoral Dissertations and Master's Theses

Flight test data is a valuable resource used in many aerospace applications. However, procuring a sufficiently large database of flight test data poses several challenges. Nominal flight tests can be expensive and time-consuming and require much post-processing depending on the availability of sensors and the quality of the sensor output. Flight test performed outside of nominal flight conditions, or flight tests in which failures are introduced, add to the inherent risk and danger associated with flight tests. The most popular alternative to flight test, numerical simulations, may fail to fully capture all non-linear behavior. While flight tests will always be …


Data-Driven Porosity Prediction For Directed Energy Deposition, Georgia E. Kaufman Jul 2023

Data-Driven Porosity Prediction For Directed Energy Deposition, Georgia E. Kaufman

Electrical and Computer Engineering ETDs

Stochastic flaw formation leading to poor print quality is a major obstacle to the utility of directed energy deposition (DED), a laser and metal powder-based additive manufacturing technology for construction and repair of custom metal parts. While melt pool temperature variability is known to be a major factor in flaw formation, control schemes to decrease flaw formation are limited by a lack of physics-based models that fully and accurately describe DED. In this work, a stochastic reachability analysis with a data-driven model based on thermal images of the melt pool was conducted to determine the likelihood of violating melt pool …


In-Situ Thermal And Deformation Characterization Of Additive Manufacturing Processes, Nicholas Phillips Jul 2023

In-Situ Thermal And Deformation Characterization Of Additive Manufacturing Processes, Nicholas Phillips

Doctoral Dissertations and Master's Theses

Additive manufacturing (AM) is a rapidly growing industry with numerous applications in the aerospace industry such as aircraft parts and emergency tools on the International Space Station. Defects in additively manufactured structures, however, can waste a lot of time and money. Being able to monitor the manufacturing process for defects is one of the first steps which can be taken to mitigate these losses. This study focuses on the use of thermography in conjunction with deep learning to identify flaws during 3D printing of composite structures made using Onyx, a mixture of chopped carbon fiber and nylon, composite prints. In …


Modeling, Control, And Hardware Development Of A Thrust-Vector Coaxial Uav, Andrew North Jul 2023

Modeling, Control, And Hardware Development Of A Thrust-Vector Coaxial Uav, Andrew North

Doctoral Dissertations and Master's Theses

This thesis introduces a unique thrust vector coaxial unmanned aerial vehicle (UAV) configuration and presents a comprehensive investigation encompassing dynamics modeling, hardware design, and controller development. Using the Newton-Euler method, a dynamic model for the UAV is derived to gain in-depth insights into its fundamental flight characteristics. A simple thrust model is formulated and modified by comparing it with data obtained from vehicle testing. The feasibility of manufacturing such a vehicle is assessed through the development of a hardware prototype. Finally, a linear state feedback controller is designed and evaluated using the non-linear dynamics model. The results demonstrate successful validation …


Analysis Of The Performance, Recertification, And Sustainability Of A Cessna 172n Modified With An O-360-A4m Powerplant, Variable Timing Electronic Ignition, And Tuned Exhaust, Kelsey Lee Kaht Jul 2023

Analysis Of The Performance, Recertification, And Sustainability Of A Cessna 172n Modified With An O-360-A4m Powerplant, Variable Timing Electronic Ignition, And Tuned Exhaust, Kelsey Lee Kaht

Theses and Dissertations

The purpose of this thesis is to discuss the performance, modification, and recertification of the test aircraft, a Cessna 172N that has been equipped with an O-360-A4M power plant, tuned exhaust, and variable timing electronic ignition, and to compare the aircraft to a stock aircraft and other high-performance aircraft to determine the feasibility of the modifications. 65 knot, 80 knot, and 95 knot steady state climb and 2000 ft and 5000 ft level acceleration tests were performed with the test aircraft at the Melbourne Orlando International Airport. The weather was clear with calm wind, and there was only one issue …


Consumer 3d Printing For Remote Control Aircraft Wings: Development Of Novel Wingbox Structure, Ian Clark Jun 2023

Consumer 3d Printing For Remote Control Aircraft Wings: Development Of Novel Wingbox Structure, Ian Clark

University Honors Theses

Remote control aircraft construction and can be a very expensive and time-consuming hobby. With 3D printer consumer adoption rates skyrocketing, there is a gap between demand for RC aircraft and suitable well-designed models available to creators and hobbyists. By creating and testing two iterations of wingbox geometries, this research aims to help close that gap by producing an easily printable wing structure. While there are improvements that can be made on this work, this research has been effective in generating a novel wingbox structure for FFF 3D printing that has distinct advantages over other designs currently available.


Dynamic Mode Decomposition As A Tool For Reducing Computational Time In Numerical Simulation Of Complex Flows, Laura Amelia George Jun 2023

Dynamic Mode Decomposition As A Tool For Reducing Computational Time In Numerical Simulation Of Complex Flows, Laura Amelia George

Electronic Theses and Dissertations

The length of simulation time for unsteady computational fluid dynamics (CFD) is often based on intuition or best practices, as there is no established convergence criteria to guarantee that sufficient flow time has elapsed to resolve all spatio-temporal content. Thus, these simulations are often run longer than necessary, but this increases the run time and computational resources required. This thesis first introduces an algorithm, based on dynamic mode decomposition (DMD), that can determine when continuing an unsteady CFD computation no longer yields additional spatio-temporal information. This algorithm is demonstrated on an analytical dataset as well as two CFD test cases: …


Wast3d Potential, Andrew Larsen Jun 2023

Wast3d Potential, Andrew Larsen

Masters Theses

Waste is obsolete. Standard building industry practices are harmful to the environment. Non-traditional construction methods were examined as alternatives. Circular design logic was the guiding principle in material choice. Additive manufacturing is a proven modern method for building construction. Research on 3D printing case studies revealed that recycled plastic is a proven material and readily available. Removing plastic waste from the environment and sequestering it in architectural components gives the material a new purpose. The component of focus was a building block for a wall assembly. Inspiration was taken from the hexagonal Basalt rock formations found near volcanic fault lines. …


Improving The Tensile Mechanical Properties Of Direct Energy Deposited (Ded) Inconel 718 Aircraft Components Using A Standard Heat Treatment, Spencer Vincent Flynn Jun 2023

Improving The Tensile Mechanical Properties Of Direct Energy Deposited (Ded) Inconel 718 Aircraft Components Using A Standard Heat Treatment, Spencer Vincent Flynn

Materials Engineering

This project aimed to improve the mechanical properties of as-printed additively manufactured Inconel 718 samples using a heat treatment usually used for cast and wrought Inconel 718. The mechanical properties sought to be optimized were yield strength, ultimate tensile strength, elongation, and reduction in area. The property goals were to match or exceed those of cast and heat treated Inconel 718. Wire-fed electron beam direct energy deposition (DED) was used to manufacture the samples, which were then heat treated using the AMS 5663 standard in an inert atmosphere. The samples were then tested in tension to obtain data on their …


Cooled Liquid Rocket Thrust Chamber, Benjamin Gibson, Kealan Frederick Harris, Ryan Frank Schackel, Bjorn Thorsen Jun 2023

Cooled Liquid Rocket Thrust Chamber, Benjamin Gibson, Kealan Frederick Harris, Ryan Frank Schackel, Bjorn Thorsen

Mechanical Engineering

Cooling may affect the thrust output of a small-scale rocket. Little research is published about small-scale rocket performance. We hypothesize the thrust produced varies as the amount of cooling varies. To facilitate assessing this hypothesis, we have designed and built a liquid rocket engine rated for at approximately 25 lbf of thrust. Our objective was to build in parallel with Cal Poly Space Systems, who built a rocket engine with similar specifications except without cooling. Our challenge is to integrate film cooling, so that the effects of cooling may be compared to Cal Poly Space System’s engine which has …


3d Printed Aircraft, Matthew Nagy, Charles D'Amico, Alexis Salgado Medina Jun 2023

3d Printed Aircraft, Matthew Nagy, Charles D'Amico, Alexis Salgado Medina

Mechanical Engineering

This project is to design, build, and test a 3D-printable aircraft. The goal is to create a final design that will be able to fly for the longest duration possible, around 20 seconds. To determine the correct preliminary design and manufacturing process for a 3D printed RC aircraft, an analysis of multiple design options and manufacturing materials was performed. This allowed for a variety of choices for aircraft type, airfoil design, structure, among other topics to be narrowed down to the most promising option. It has been found that the aircraft will follow a design similar to industry motor-gliders, with …


Disc Golf Throwing Robot, Nevada S. Schultz, Sydney M. Lewis, Erick Edmundo Daza, Rachel Alysse Greenberg, Peter M. Kean Jun 2023

Disc Golf Throwing Robot, Nevada S. Schultz, Sydney M. Lewis, Erick Edmundo Daza, Rachel Alysse Greenberg, Peter M. Kean

Mechanical Engineering

Disc golf companies need better methods to test disc flight. The scope of this project is to create a disc throwing robot that can throw a disc golf driver 450-500 feet, with control over the speed, spin, and release angle. Research shows that multiple disc-throwing products exist; however, none meet the full requirements of this project. The Cal Poly senior project design team created a proof-of-concept machine. This prototype started as a two-wheel mechanism. Eventually, a third wheel was added, allowing for complete control over disc spin. The three-wheel prototype reached 62 mph when perfectly calibrated. The prototype is accurate, …


Instrumented Control Column For Optionally Piloted Aircraft, Andrew J. Klein Jun 2023

Instrumented Control Column For Optionally Piloted Aircraft, Andrew J. Klein

Electrical Engineering

Natilus, an aerospace company that is rapid-prototyping optionally piloted aircraft (OPA) for the shipping industry, needs a system that retrieves control column position data in order to manipulate flight simulator parameters in software. At present, a universally compatible system for all aircraft does not exist. Typically, established aerospace companies will sink significant time and money into developing proprietary systems for control column data retrieval as every aircraft is unique in its layout and linkage design. However, as a startup developing their first aircraft, Natilus does not have the privilege of modifying an existing sensor system to work with their HIL …


Feasibility Assessment Of An All-Electric, Narrow-Body Airliner, Ariel Sampson Jun 2023

Feasibility Assessment Of An All-Electric, Narrow-Body Airliner, Ariel Sampson

Master's Theses

Combustion emissions from aviation operations contribute significantly to climate change and air pollution. Accordingly, there is increasing interest in advancing battery-powered propulsion for aviation applications to reduce emissions. As batteries continue to improve, it is essential to recognize breakthroughs in battery specific energy in the context of air transport vehicles. Most electric aircraft designs and programs have focused on small aircraft because of restrictive battery performance. This work presents a feasibility assessment for an all-electric airliner based on an Airbus A220-100 with turbofan engines replaced by electric motors and propellers. The analysis compares the performance characteristics of the electric airliner …


Gyroless Nanosatellite Attitude Determination Using An Array Of Spatially Distributed Accelerometers, Kory J. Haydon Jun 2023

Gyroless Nanosatellite Attitude Determination Using An Array Of Spatially Distributed Accelerometers, Kory J. Haydon

Master's Theses

The low size and budget of typical nanosatellite missions limit the available sensors for attitude estimation. Relatively high noise MEMS gyroscopes often must be employed when accurate knowledge of the spacecraft’s angular velocity is necessary for attitude determination and control. This thesis derived and tested in simulation the “Virtual Gyroscope” algorithm, which replaced a standard gyroscope with an array of spatially distributed accelerometers for a 1U CubeSat mission. A MEMS accelerometer model was developed and validated using Root Allan Variance, and the Virtual Gyroscope was tested both in the open loop configuration and as a replacement for a gyroscope in …


Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga Jun 2023

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga

Master's Theses

On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure.

This research leverages a distributed control approach, …


Autonomous Attitude Consensus For Nanosatellite Formations In Leo, Laird J. Mendelson Jun 2023

Autonomous Attitude Consensus For Nanosatellite Formations In Leo, Laird J. Mendelson

Master's Theses

Consensus strategies are examined as a possible approach to achieving attitude alignment for a large, close-proximity formation of nanosatellites in low earth orbit (LEO). An attitude-only distributed consensus approach is selected for further consideration due to its comparatively low data transmission requirements. The convergence of a connected network of satellites to the attitude agreement subspace under this control law is shown using a Lyapunov stability approach with a set of idealizing assumptions. A moderate-fidelity simulation demonstrates the performance of the control law under realistic conditions that violate those assumptions. Particular emphasis is placed on the conditions that arise from the …


Study Of A Carbon Fiber Reinforced Polymer Composite Using A Biobased Polyurethane As A Thermosetting Resin, Teddy Mageto May 2023

Study Of A Carbon Fiber Reinforced Polymer Composite Using A Biobased Polyurethane As A Thermosetting Resin, Teddy Mageto

Electronic Theses & Dissertations

Carbon Fiber Reinforced Polymer composites (CFRP) have garnered increasing interest in recent years especially in the aerospace and automobile industries where they are gradually replacing metals as structural materials. This is owing to their light weight, high strength, high modulus, and excellent strength-to-weight ratio. Polymers are typically used as thermosetting resins in these composites. However, the synthesis of polymers currently is conducted via petrochemical processes which leads to adverse effects on the environment. To this end, in this work a biobased Polyurethane (PU) was used as a thermosetting resin in a CFRP. The biobased PU was synthesized by the reaction …


The Effects Of Differing Light Wavelengths And Gravity On, Reese Chesshir May 2023

The Effects Of Differing Light Wavelengths And Gravity On, Reese Chesshir

Honors Theses

Physarum is a slime mold in the class of Mycetozoan and the family of Physaraceae. It is a single cellular, multinuclear organism that is not classified as an animal, plant, or fungi. Physarum growth for long-term space travel would be beneficial because it is a decomposer and is able to break down material and waste to recycle. This is important for transferring energy and allowing other organisms to grow. The purpose of this experiment is to study the effect of different light wavelengths and the influence of gravity on Physarum growth patterns.


Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy May 2023

Computational Analysis Of Steady Hypersonic Flow Fields Of Nasa Benchmark Geometries Utilizing Ansys Fluent, Aidan Murphy

McKelvey School of Engineering Theses & Dissertations

The Hypersonic International Flight Research Experimentation (HIFiRE) program explores and advances hypersonic aerospace systems by developing a multitude of test flight geometries and conducting experimental test flights to obtain data for use in validation of computational models and results. This study focuses on computational validation of heat flux, and calculation of static pressure profiles, skin friction coefficient profiles, and flow contours. The flow fields studied are for Mach number 7.18 and angles of attack (α) of 0° & 2°. These flow fields include many compressible flow features such as an expansion wave at the intersection of the cone and flat …


Online Estimation Of Unknown Parameters For Flexible Spacecraft, Nicolo Woodward May 2023

Online Estimation Of Unknown Parameters For Flexible Spacecraft, Nicolo Woodward

Doctoral Dissertations and Master's Theses

Attitude controls methods of highly flexible spacecraft have seen increased interest over the last decades thanks to the technological development of flexible solar panels and deploy-ables, which improves the capabilities of small satellites. However, a high-fidelity model of the flexible mode dynamics is hard to obtain in on-ground testing because not all modes of frequencies can be observed, complicating the controller design. Furthermore, plastic deformations due to long periods of storage of stowed flexible components could result in exciting frequencies outside of the designed controller’s bandwidth, leading to an uncontrollable system. This thesis proposes a method to develop a high-fidelity …


An Online Adaptive Machine Learning Framework For Autonomous Fault Detection, Nolan Coulter May 2023

An Online Adaptive Machine Learning Framework For Autonomous Fault Detection, Nolan Coulter

Doctoral Dissertations and Master's Theses

The increasing complexity and autonomy of modern systems, particularly in the aerospace industry, demand robust and adaptive fault detection and health management solutions. The development of a data-driven fault detection system that can adapt to varying conditions and system changes is critical to the performance, safety, and reliability of these systems. This dissertation presents a novel fault detection approach based on the integration of the artificial immune system (AIS) paradigm and Online Support Vector Machines (OSVM). Together, these algorithms create the Artificial Immune System augemented Online Support Vector Machine (AISOSVM).

The AISOSVM framework combines the strengths of the AIS and …


Sensor Module Network For Monitoring Trace Gases In The International Space Station, Aaron Beck, Drake Provost, Christopher English, Kamrin Gustave May 2023

Sensor Module Network For Monitoring Trace Gases In The International Space Station, Aaron Beck, Drake Provost, Christopher English, Kamrin Gustave

Honors Capstones

The Jet Propulsion Laboratory (JPL) of the National Aeronautics and Space Administration (NASA) aims to develop a sensor network for the International Space Station (ISS) to ensure a comprehensive understanding of air quality within the station. The accumulation of carbon dioxide (CO­­­­­2) can lead to cognitive impairment, headaches, and potentially dangerous situations at high concentrations. Monitoring air content at the ISS is critical to maintaining a healthy environment for crew onboard. Exposure to harmful gases causes negative side effects that make crew sick, which may interfere with their responsibilities. CO2 is a gas that should be monitored …