Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering

Additively Manufactured Lenses For Modulating Guided Waves In Laminated Composites, Hajar Righi Dec 2022

Additively Manufactured Lenses For Modulating Guided Waves In Laminated Composites, Hajar Righi

Theses and Dissertations

Composite materials have increasingly been used as an alternative to metals and other isotropic materials for primary structural components in aerospace industries. Unlike traditional isotropic materials, composite materials are known to have complex internal microstructures. Therefore, it is essential to develop methods for the inspection, evaluation, and monitoring of composite materials. Ultrasonic-guided waves and, more precisely, Lamb waves have proven to be an efficient and accurate technique for the non-destructive testing. Since guided waves are dispersive and multimodal, it is important to develop a practical method to manipulate Lamb waves to achieve better structural health monitoring and non-destructive inspection results. …


Carbon Fiber Coil Spring Characterization And Manufacturing, Cooper Madrazo May 2022

Carbon Fiber Coil Spring Characterization And Manufacturing, Cooper Madrazo

UNLV Theses, Dissertations, Professional Papers, and Capstones

Helical coil springs are used in many mechanical design applications including industrial machines, devices, and vehicle suspension systems. It is desirable to minimize the weight of vehicle suspension systems as this can improve performance and handling. Most vehicle suspension coil springs are made from solid steel alloys or other metallic materials. Significant weight savings could be achieved if the metallic material were replaced by high performance fiber reinforced polymer composites. However, the coil spring geometry is a difficult manufacturing challenge for composite materials. The goal of this thesis was to investigate efficient and low-cost manufacturing methods to produce light-weight polymer …


Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan Jun 2021

Prediction Of In-Plane Stiffnesses And Thermomechanical Stresses In Cylindrical Composite Cross-Sections, Bryson M. Chan

Master's Theses

Accurate mechanical analysis of composite structures is necessary for the prediction of laminate behavior. Cylindrical composite tubes are a mainstay in many structural applications. The fundamental design of circular composite cross-sections necessitates the development of a comprehensive composite lamination theory. A new analytical method is developed to characterize the behavior of thin-walled composite cylindrical tubes using a modified plate theory. A generated numerical solver can predict properties such as axial stiffness, bending stiffness, layer stresses, and layer strains in composite tubes subjected to combined mechanical loading and thermal effects. The model accounts for the curvature by transforming and translating the …


Composite-Based Additive Manufacturing Applications In The Polymer Injection Molding Cycle, Cody Bivens Jan 2021

Composite-Based Additive Manufacturing Applications In The Polymer Injection Molding Cycle, Cody Bivens

Masters Theses

“The experimental method utilized in this research was the application of composite-based additive manufacturing (CBAM) mold plates in the injection molding process. The mold plates comprised carbon fibers and polyether ether ketone (PEEK) matrix. Modifications were made to the mold plates post manufacturing in order to properly adapt to the rest of the injection molding die. A custom cooling system was engineered and integrated into the injection molding machine for the CBAM mold plates. The polymer processed in the injection molding cycle for this study was Lustran 348 acrylonitrile butadiene styrene (ABS). The result of the trials conducted in this …


A Post-Impact Behavior Of Platelet-Based Composites Produced By Compression Molding, Christopher Eugene Ervin Volle Apr 2020

A Post-Impact Behavior Of Platelet-Based Composites Produced By Compression Molding, Christopher Eugene Ervin Volle

Mechanical & Aerospace Engineering Theses & Dissertations

Prepreg-based Platelet Molded Compounds (PPMCs) are quickly becoming a widely used method for creating structural components in the aerospace and automotive industries. The discontinuous nature of the platelets used allow good formability of both complex and basic structural components; from seats on commercial airplanes to outer panels of vehicles.

This thesis will look at an important research question of these composites: how PPMCs behave under dynamic loading, e.g. impact and post-impact behavior. Impact is analyzed using recorded force and velocity data to find the absorbed energy. Digital image correlation is used with compression after impact testing to study the propagation …


A Comparison Of Crushing Parameters Of Graphite Composite Thin-Walled Cylinders Cured In Low And High Pressures, Trenton John Matson Sep 2019

A Comparison Of Crushing Parameters Of Graphite Composite Thin-Walled Cylinders Cured In Low And High Pressures, Trenton John Matson

Master's Theses

Out-of-Autoclave (OoA) processes for manufacturing aerospace-grade parts needs to be better understood to further the development and success of industries that are manufacturing reusable launch vehicles, military and commercial aircraft, and spacecraft. Overcoming the performance limitations associated with OoA, also known as low-pressure prepreg curing, methods (void count, energy absorption, etc.) will help decrease the costs associated with aerospace composite manufacturing and the negative environmental effects correlated with high-pressure composite curing methods. Experimental, theoretical, and numerical approaches are used to explore both low and high-pressure curing cycles and how the two different processes affect final cured parts. Quasi-static uniaxial compression …


Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha Aug 2018

Design Survey Of Laminated Composite I-Beam, Mrinmoy Saha

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Composite I-beams are popular for high-strength low-weight applications. Learning the macro-mechanics and designing the composite I-beam properly are necessary. In this report, a design overview of the composite I-beam is discussed which is based on classical lamination theory where it includes the homogenization approach, the plane stress assumption and the Kirchhoff hypothesis. Using these assumptions, a method was developed to come up with the effective material properties of a beam. Formulas to calculate maximum deflection and maximum bending stress and shear stress and the stress concentration at the connection of web-flange are discussed which describe ways for designing and manufacturing …


Optimum Design Of Composite Wing Spar Subjected To Fatigue Loadings, Juan Reuben Lazarin Jun 2017

Optimum Design Of Composite Wing Spar Subjected To Fatigue Loadings, Juan Reuben Lazarin

Master's Theses

Composites are now being incorporated into aircraft designs because of their high strength to weight ratio compared to traditional metal materials. Due to the complexity of the material, composite parts are presently being over designed to satisfy static and fatigue requirements. A greater understanding of composite fatigue behavior will allow for even greater weight savings leading to increased fuel economy. A critical part of an aircraft that is subjected to fatigue bending loads are its wings. The forces acting on the wings include its lift distribution, powerplant, and fuel which can be carried in the wing body. When in flight …


Multidisciplinary Shape Optimization Of A Composite Blended Wing Body Aircraft, Charles Maxwell Boozer May 2017

Multidisciplinary Shape Optimization Of A Composite Blended Wing Body Aircraft, Charles Maxwell Boozer

Theses and Dissertations

A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft’s range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool’s architecture and the analysis tools that are …


Experimentation Of Mode I And Mode Ii Fracture Of Uni-Directional Composites And Finite Element Analysis Of Mode I Fracture Using Cohesive Contact, Joseph Daniel Garrett Sep 2016

Experimentation Of Mode I And Mode Ii Fracture Of Uni-Directional Composites And Finite Element Analysis Of Mode I Fracture Using Cohesive Contact, Joseph Daniel Garrett

Master's Theses

As the use of fiber-reinforced composites has increased over the decades, so has the need to understand the complexity of their failure mechanisms as engineers seek to improve the damage tolerance of composite laminated structures. One of the most prevalent and limiting mode of failure within composite laminates is delamination, since it not only reduces a structures stiffness and strength, but can be very difficult to detect without the use of special non-destructive equipment. Industry testing organizations have utilized several fracture tests in order to characterize the fracture toughness of composite materials under different loading conditions. For this research, ASTM …


Dielectric Characteristics Of Microstructural Changes And Property Evolution In Engineered Materials, Jallisa Janet Clifford Dec 2015

Dielectric Characteristics Of Microstructural Changes And Property Evolution In Engineered Materials, Jallisa Janet Clifford

Theses and Dissertations

Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to specific needs is always very attractive. Hence engineered materials are evolving into more complex formulations or heterogeneities in multiple disciplines. Design of microstructure at multiple scales controls the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow …


A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher Aug 2012

A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher

Master's Theses

This research effort explored the possibility of using interwoven conductive and nonconductive fibers in a composite laminate for structural health monitoring (SHM). Traditional SHM systems utilize fiber optics, piezoelectrics, or detect defects by nondestructive test methods by use of sonar graphs or x-rays. However, these approaches are often expensive, time consuming and complicated.

The primary objective of this research was to apply a resistance based method of structural health monitoring to a composite structure to determine structural integrity and presence of defects.

The conductive properties of fiber such as carbon, copper, or constantan - a copper-nickel alloy - can be …


Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera Jun 2012

Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera

Mechanical Engineering

The following report encompasses the Human Powered Helicopter Rotor Team’s conceptual models and ideas based on research and modeling analysis. The following gives an overview of material researched, concept generation, analyzation, manufacturing, and testing for a rotor structure to be installed in a Human Powered Helicopter.


An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez Jun 2012

An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez

Master's Theses

This research studies the effects of a damage arrestment device embedded between a carbon fiber facesheet and foam core to find whether there is an increase in the structural integrity of the sandwich composites. Experimental and theoretical finite element analyses are implemented for two different composite sandwich geometries; plates and beams. Each structure consisted of the same loading criteria and was restricted to the same vibration fixture during the experiment. An accelerometer was placed on the composite plate to record the amplitude and the natural frequencies of the composite structure. Each composite specimen is then fixed to the surface of …


X-51 Composite Airframe, Brendon J. Townshend Jan 2011

X-51 Composite Airframe, Brendon J. Townshend

Aerospace Engineering

This paper gives an overview of the progress that has been made in the design build of the X-51. The X-51 is a composite scale replica of a P-51D fuselage integrated with a P-51H wing. Issues with the airframe as well as current action items are discussed, as well as findings so far in preliminary design.


An Investigation Of Initially Delaminated Composite Sandwich With Delamination Arrest Mechanism Under Buckling Loading, Tony D. Tran Dec 2010

An Investigation Of Initially Delaminated Composite Sandwich With Delamination Arrest Mechanism Under Buckling Loading, Tony D. Tran

Master's Theses

This thesis involves the development of a fiberglass-foam composite sandwich structure with the introduction of delamination arrestment keys; therefore, a study of an initially delaminated composite sandwich structure was the experimental analysis on multiple configurations in how the arrestment keys are placed.

The first part of this thesis research was to the experimental design and manufacturing of the composite sandwich plates. These plates were later cut down to the specific test dimensions and manufacturing processes for the composite sandwich plates and test specimens were created. The composite sandwich plates were manufactured using a vacuum resin infusion process. The dimensions of …


An Investigation Of Damage Arrestment Devices Application With Fastener/Hole Interaction, Richard Vincent S. Balatbat Sep 2010

An Investigation Of Damage Arrestment Devices Application With Fastener/Hole Interaction, Richard Vincent S. Balatbat

Master's Theses

This thesis presents a parametric study on the effects of how damage arrestment devices application interacts with a fastener in a composite sandwich panel. The primary objective of the damage arrestment device was to prevent the failure of the composite face sheet, such as crack propagation, around the hole/fastener joint. The damage arrestment devices are made of composite strips that are inserted under the face sheet to increase the overall structural strength of the panel and to prevent the propagation of failure along the hole. This was supposed to be a quicker and stronger alternative to potted inserts for composite …


Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry Jun 2010

Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry

Aerospace Engineering

A small scale composite wing based on a design found on an experimental aircraft was designed, constructed, and tested dynamically and statically. The wing was constructed similarly to an experimental aircraft wing. The performed static test was intended to produce pure bending. Strain gages were used to measure strains on the wing structure. The strains were converted to stresses to aid in analysis. The static test results suggested that the wing was actually under torsion. Four structural modes were found from the static test. A finite element analysis model was made to compare experimental results to numerical analytical results. The …


Fiber Enhanced Viscoelastic Damping Polymers And Their Application To Passive Vibration Control, Houchun Xia Jul 1993

Fiber Enhanced Viscoelastic Damping Polymers And Their Application To Passive Vibration Control, Houchun Xia

Mechanical & Aerospace Engineering Theses & Dissertations

A new composite damping material is investigated, which consists of a viscoelastic matrix and high elastic modulus fiber inclusions. This fiber enhanced viscoelastic damping polymer is intended to be applied to light-weight flexible structures as surface treatment for passive vibration control. A desirable packing geometry for the composite material is proposed, which is expected to produce maximum shear strain in the viscoelastic damping matrix. Subsequently, a micromechanical model is established in which the effect of fiber segment length and relative motion between neighboring fibers are taken into account. Based on this model, closed form expressions for the effective storage and …