Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Engineering

Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane Jan 2023

Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane

Dissertations, Master's Theses and Master's Reports

Polymer matrix composite materials are widely used as structural materials in aerospace and aeronautical vehicles. Resin/reinforcement wetting and the effect of polymerization on the thermo-mechanical properties of the resin are key parameters in the manufacturing of aerospace composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. It is challenging to determine contact angle values experimentally of high-performance resins on CNT materials such as CNT, graphene, bundles or yarns, and BNNT surfaces. It is also experimentally difficult to determine the effect of polymerization reaction on material properties of a …


Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad Jan 2023

Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad

Dissertations, Master's Theses and Master's Reports

There is an increase in demand for new lightweight structural materials in the aerospace industry for more efficient and affordable human space travel. Polymer matrix composites (PMCs) with reinforcement material as carbon nanotubes (CNTs) have shown exceptional increase in the mechanical properties. Flattened carbon nanotubes (flCNTs) are a primary component of many carbon nanotube (CNT) yarn and sheet materials, which are promising reinforcements for the next generation of ultra-strong composites for aerospace applications. These flCNT/polymer materials are subjected to extreme pressure and temperature during curing process. Therefore there is a need to investigate the evolution of properties during the curing …


Wireless Power Transfer In Autonomous Mobile Microgrids, Carl Greene Jan 2022

Wireless Power Transfer In Autonomous Mobile Microgrids, Carl Greene

Dissertations, Master's Theses and Master's Reports

The ability to autonomously dock unmanned ground vehicles plays a key role in mobile micro-grids, where efficient power transfer is paramount. The approach utilized in this work allows for near-field wireless power transfer in remote locations with minimal support. Establishing a micro-grid power system connection autonomously using wireless power eliminates the arduous task of designing a complex, multiple degrees of freedom (MDOF) robotic arm. The work presented in this thesis focuses on both the hardware and software within the micro-grid system. This particular near-field wireless system consists of a primary and secondary set of modules, comprised of Litz wire coils, …


Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian Jan 2022

Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian

Dissertations, Master's Theses and Master's Reports

Composite materials require a multi-scale approach to fully understand its behavior. At the micro level, material behavior analysis is conducted most often using numerical or analytical approaches. These models, however, require validation from experimental data to ensure material predictions are accurate. This study compares a semi-analytical micromechanical analysis tool, MAC/GMC, to experimental results of in-situ microscale transverse compression testing conducted at AFRL facilities. Effective properties, stress-strain curves, stress and strain fields, and damage predictions are compared with experimental outputs. Both generalized method of cells (GMC) and high-fidelity generalized method of cells (HFGMC) theories implemented within MAC/GMC show results that agree …


Concept Evaluation And Development Of A Novel Approach For Integration Of Turbogeneration, Electrification And Supercharging On Heavy Duty Engines, Satyum Joshi Jan 2022

Concept Evaluation And Development Of A Novel Approach For Integration Of Turbogeneration, Electrification And Supercharging On Heavy Duty Engines, Satyum Joshi

Dissertations, Master's Theses and Master's Reports

While many technologies such as electrically assisted turbocharging, exhaust energy recovery and mild hybridization have already proven to significantly increase heavy-duty engine efficiency, the key challenge to their widespread adoption has been their cost effectiveness and packaging. This research specifically addresses these challenges through evaluation and development of a novel technology concept termed as the Integrated Turbogeneration, Electrification and Supercharging (ITES) system. The concept integrates a secondary compressor, a turbocompound/expander turbine and an electric motor through a planetary gearset into the engine cranktrain. The approach enables a reduced system cost and space-claim, while maximizing the efficiency benefits of independent technologies. …


Calorimetric Measurements Of Lunar Regolith Simulant And Water. An Experimental Study Correlating Weight Percent Water And Temperature Change Through Periods Of Phase Change., George B. Johnson Jan 2022

Calorimetric Measurements Of Lunar Regolith Simulant And Water. An Experimental Study Correlating Weight Percent Water And Temperature Change Through Periods Of Phase Change., George B. Johnson

Dissertations, Master's Theses and Master's Reports

Permanently Shaded Regions (PSRs) are cold traps located around the lunar south pole that have been confirmed to contain possible interesting quantities or volatiles such as H2O, CO2, SO2, CH4, and others. [1] The identification of these volatiles on the lunar surface was a critical step in the development of NASA’s strategic goals for scientific discoveries, sustained space travel and exploration, and re-establishing a human presence on the moon. These volatiles are vital to the future of operating in and exploring space. The LCROSS impact revealed the existence of these resources in PSRs but more information is needed about the …


Active Gravity Offloading System With Infrared Tracking For Rover Testing, Travis Wavrunek Jan 2021

Active Gravity Offloading System With Infrared Tracking For Rover Testing, Travis Wavrunek

Dissertations, Master's Theses and Master's Reports

Gravity offloading is a tool used to test how different gravitational forces will impact the mobility of rovers bound for Lunar or Martian expeditions. Previous approaches have been successful in simulating partial gravity environments, and this report details how the Infrared- Gravity offload (IRGO) system, developed for the Planetary Surface Technology Development Laboratory (PSTDL) and lunar simulant sandbox, has a similar aim. Through a series of iterations, IRGO has been developed to actively track an infrared beacon and follow a rover within the test chamber to eliminate inertial and friction forces along two horizonal axes. A portion of a rover’s …


Commissioning And Testing Of A New Dusty Thermal Vacuum Chamber, Ben Wiegand Jan 2021

Commissioning And Testing Of A New Dusty Thermal Vacuum Chamber, Ben Wiegand

Dissertations, Master's Theses and Master's Reports

The Dusty Thermal Vacuum Chamber (DTVAC) is a new facility purchased by the Planetary Surface Technology Development Lab (PSTDL) that will be used to test the Technology Readiness Level (TRL) of extraplanetary devices and systems. With the use of vacuum pumps and simulated regolith, the DTVAC can create extraplanetary environments such as those found on the Moon and Mars. This report details the actions that were taken to prepare the DTVAC for TRL testing, including the development of a Data Acquisition Center (DAC) and test fixtures, along with the findings of baseline tests that were performed to understand the behavior …


Role Of Eta Phase Evolution On Creep Properties Of Nickel Base Superalloys Used In Advanced Electric Power Generation Plants, Ninad Mohale Jan 2021

Role Of Eta Phase Evolution On Creep Properties Of Nickel Base Superalloys Used In Advanced Electric Power Generation Plants, Ninad Mohale

Dissertations, Master's Theses and Master's Reports

Advanced fossil energy power generation plants require materials that withstand high temperatures and corrosive environments. One such material that is used in steam turbines is Nimonic 263. It is a nickel-base superalloy that is principally strengthened by gamma primephase (Ni3(Ti, Al)) and has an L12structure. At extended times and at turbine operating temperatures however, eta (Ni3Ti) phase is known to form at the expense of gamma prime. Eta has a complex DO24structure and is the stable phase between 750°C and 900°C, but with slow kinetics of formation. Little is understood about eta …


Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud Jan 2020

Multiscale Modeling Of Carbon Fibers/Graphene Nanoplatelets/Epoxy Hybrid Composites For Aerospace Applications, Hashim Al Mahmud

Dissertations, Master's Theses and Master's Reports

Significant research effort has been dedicated for decades to improve the mechanical properties of aerospace polymer-based composite materials. Lightweight epoxy-based composite materials have increasingly replaced the comparatively heavy and expensive metal alloys used in aeronautical and aerospace structural components. In particular, carbon fibers (CF)/graphene nanoplatelets (GNP)/epoxy hybrid composites can be used for this purpose owing to their high specific stiffness and strength. Therefore, this work has been completed to design, predict, and optimize the effective mechanical properties of CF/GNP/epoxy composite materials at different length scales using a multiscale modeling approach. The work-flow of modeling involves a first step of using …


Estimation Of Atmospheric Conditions Over A Long Horizontal Path Using Multi-Frame Blind Deconvolution (Mfbd) Techniques In Comparison With Delayed Tilt Anisoplanatism (Delta) Software, Hannah Stoll Jan 2020

Estimation Of Atmospheric Conditions Over A Long Horizontal Path Using Multi-Frame Blind Deconvolution (Mfbd) Techniques In Comparison With Delayed Tilt Anisoplanatism (Delta) Software, Hannah Stoll

Dissertations, Master's Theses and Master's Reports

The potential to track and view objects in space from the ground with greater near real time knowledge of the intervening turbulence would be a revolutionary capability. The objective of this thesis is to cross-validate two separate methods used to estimate the Fried parameter. This verification is a step toward a commercial grade product that would make real-time estimates of the turbulence strength along an optical path from a ground-based observatory to a satellite in orbit around the Earth. Michigan Technological University has developed a multi-frame blind deconvolution (MFBD) algorithm used to estimate r0 and it was tested against MZA’s …


Generation Of Premix Laminar Flame Speed Library, Sai Prashanth Kumar Jan 2020

Generation Of Premix Laminar Flame Speed Library, Sai Prashanth Kumar

Dissertations, Master's Theses and Master's Reports

The Laminar flame speed is an essential parameter in measuring turbulent premixed combustion applied in Spark ignition engines. Instead of using power-law correlations, which is valid only for particular ranges, the procedure for generating a premixed laminar flame speed library is defined using MTU – Master mechanism for a wide range of charge mixture conditions inside an engine combustion chamber: Temperature (300 – 700 K), Pressure (1 – 70 bar) and reactant mixture composition of equivalence ratio (0.4 – 2.0) Laminar flame speed library is generated for methane. The mechanism's performance was improved by adjusting the pre-exponential factor of the …


Algorithms And Optimal Control For Spacecraft Magnetic Attitude Maneuvers, Mohammed Desouky Jan 2019

Algorithms And Optimal Control For Spacecraft Magnetic Attitude Maneuvers, Mohammed Desouky

Dissertations, Master's Theses and Master's Reports

This study focused on providing applicable control solutions for spacecraft magnetic attitude control system. Basically, two main lines are pursued; first, developing detumbling control laws and second, an improvement in the three-axis attitude control schemes by extending magnetic rods activation time.

Spacecraft, after separation from the launching mechanism, experiences a tumbling phase due to an undesired angular momentum. In this study, we present a new efficient variant of the B-dot detumbling law by introducing a substitute of the spacecraft angular velocity, based on the ambient magnetic field data. This B-dot law preserves the orthogonality, among the applied torque, dipole moment …


Meniscus Modeling And Emission Studies Of An Ionic Liquid Ferrofluid Electrospray Source Emitting From A Magneto-Electric Instability, Brandon Jackson Jan 2018

Meniscus Modeling And Emission Studies Of An Ionic Liquid Ferrofluid Electrospray Source Emitting From A Magneto-Electric Instability, Brandon Jackson

Dissertations, Master's Theses and Master's Reports

This dissertation presents three studies on the electrospray of ionic liquid ferrofluid. Ionic liquid ferrofluids are electrically conductive super-paramagnetic fluids which respond strongly in the presence of electric and magnetic fields. When a small reservoir of ionic liquid ferrofluid is positioned within a magnetic field, magnetic stresses will deform the fluid interface into a peak. The addition of a strong electric field will further stress the fluid interface until a threshold stress is reached at which point the surface tension cannot contain the combined stresses and a spray of fluid or ions results at the apex. This process is termed …


A New Technique To Determine Accommodation Coefficients Of Cryogenic Propellants, Kishan Bellur Jan 2018

A New Technique To Determine Accommodation Coefficients Of Cryogenic Propellants, Kishan Bellur

Dissertations, Master's Theses and Master's Reports

The control of propellant boil-off is essential in long-term space missions. However, a clear understanding of cryogenic propellant phase change and the values of accommodation coefficients are lacking. To that effect, a new method to determine accommodation coefficients using a combination of neutron imaging, thin film evaporation modeling and CFD modeling has been established. Phase change experiments were conducted in the BT-2 Neutron Imaging Facility at the National Institute of Standards and Technology (NIST) by introducing cryogenic vapor (H2 and CH4) at a set pressure into Al6061 and SS316L test cells placed inside a 70mm cryostat. Condensation is achieved by …


Influence Of Magnetic Nanoparticles And Magnetic Stress On An Ionic Liquid Electrospray Source, Kurt Joseph Terhune Jan 2017

Influence Of Magnetic Nanoparticles And Magnetic Stress On An Ionic Liquid Electrospray Source, Kurt Joseph Terhune

Dissertations, Master's Theses and Master's Reports

Two electrospray sources were developed to operate on an ionic liquid ferrofluid; one source was a pressure‑fed capillary electrospray source and the other was a novel electrospray source which used a magnetically‑induced instability to produce a peak from which an electric field could extract electrospray. Multiple characteristics of electrospray operation were examined for both sources using faraday plates/cups, a quartz crystal microbalance, a retarding potential analyzer, and a time-of-flight mass spectrometer. The ILFF electrosprays for a capillary source were shown to operate in a mixed ion/droplet regime. The mass flow of the electrospray beam was primarily transported by larger particles …


Restraint System Design And Evaluation For Military Specific Applications, Sebastian Karwaczynski Jan 2016

Restraint System Design And Evaluation For Military Specific Applications, Sebastian Karwaczynski

Dissertations, Master's Theses and Master's Reports

This research focuses on designing an optimal restraint system for usage in a military vehicle applications. The designed restraint system must accommodate a wide range of DHM’s and ATD’s with and without PPE such as: helmet, boots, and body armor. The evaluation of the restraint systems were conducted in a simulated vehicle environment, which was utilized to downselect the ideal restraint system for this program.

In December of 2011 the OCP TECD program was formulated to increase occupant protection. To do this, 3D computer models were created to accommodate the entire Soldier population in the Army. These models included the …


Transient Thermoelectric Supercooling: Isosceles Current Pulses From A Response Surface Perspective And The Performance Effects Of Pulse Cooling A Heat Generating Mass, Alfred Piggott Jan 2015

Transient Thermoelectric Supercooling: Isosceles Current Pulses From A Response Surface Perspective And The Performance Effects Of Pulse Cooling A Heat Generating Mass, Alfred Piggott

Dissertations, Master's Theses and Master's Reports

With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no …


Rapid Space Trajectory Generation Using A Fourier Series Shape-Based Approach, Ehsan Taheri Jan 2014

Rapid Space Trajectory Generation Using A Fourier Series Shape-Based Approach, Ehsan Taheri

Dissertations, Master's Theses and Master's Reports - Open

With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipment. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal …


Development Of An Ionic Liquid Ferrofluid Electrospray Source And Mode Shape Studies Of A Ferrofluid In A Non-Uniform Magnetic Field, Edmond Joseph Meyer Iv Jan 2014

Development Of An Ionic Liquid Ferrofluid Electrospray Source And Mode Shape Studies Of A Ferrofluid In A Non-Uniform Magnetic Field, Edmond Joseph Meyer Iv

Dissertations, Master's Theses and Master's Reports - Open

An electrospray source has been developed using a novel new fluid that is both magnetic and conductive. Unlike conventional electrospray sources that required microfabricated structures to support the fluid to be electrosprayed, this new electrospray fluid utilizes the Rosensweig instability to create the structures in the magnetic fluid when an external magnetic field was applied. Application of an external electric field caused these magnetic fluid structures to spray. These fluid based structures were found to spray at a lower onset voltage than was predicted for electrospray sources with solid structures of similar geometry. These fluid based structures were also found …


Space Trajectories Optimization Using Variable-Chromosome-Length Genetic Algorithms, Ahmed H. Gad Jan 2011

Space Trajectories Optimization Using Variable-Chromosome-Length Genetic Algorithms, Ahmed H. Gad

Dissertations, Master's Theses and Master's Reports - Open

The problem of optimal design of a multi-gravity-assist space trajectories, with free number of deep space maneuvers (MGADSM) poses multi-modal cost functions. In the general form of the problem, the number of design variables is solution dependent. To handle global optimization problems where the number of design variables varies from one solution to another, two novel genetic-based techniques are introduced: hidden genes genetic algorithm (HGGA) and dynamic-size multiple population genetic algorithm (DSMPGA).

In HGGA, a fixed length for the design variables is assigned for all solutions. Independent variables of each solution are divided into effective and ineffective (hidden) genes. Hidden …