Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

PdmsStar-Peg Hydrogels Prepared Via Solvent-Induced Phase Separation (Sips) And Their Potential Utility As Tissue Engineering Scaffolds, B. M. Bailey, R. Fei, Dany J. Munoz Pinto, M. S. Hahn, M. A. Grunlan Dec 2012

PdmsStar-Peg Hydrogels Prepared Via Solvent-Induced Phase Separation (Sips) And Their Potential Utility As Tissue Engineering Scaffolds, B. M. Bailey, R. Fei, Dany J. Munoz Pinto, M. S. Hahn, M. A. Grunlan

Engineering Faculty Research

Inorganic-organic hydrogels based on methacrylated star polydimethylsiloxane (PDMSstar-MA) and diacrylated poly(ethylene glycol) (PEG-DA) macromers were prepared via solvent-induced phase separation (SIPS). The macromers were combined in a dichloromethane precursor solution and sequentially photopolymerized, dried and hydrated. The chemical and physical properties of the hydrogels were further tailored by varying the number average molecular weight (Mn) of PEG-DA (Mn = 3.4k and 6k g mol-1) as well as the weight percent ratio of PDMSstar-MA (Mn = 7k g mol-1) to PEG-DA from 0:100 to 20:80. Compared to analogous hydrogels …


Actuating Individual Electrospun Hydrogel Nanofibres, Adrian Gestos, Philip G. Whitten, Gordon G. Wallace, Geoffrey Maxwell Spinks Jan 2012

Actuating Individual Electrospun Hydrogel Nanofibres, Adrian Gestos, Philip G. Whitten, Gordon G. Wallace, Geoffrey Maxwell Spinks

Australian Institute for Innovative Materials - Papers

The actuation of a single hydrogel nanofibre is measured for the first time by AFM. The actuation stress generated was comparable to that produced by skeletal muscle and the actuation rate was significantly increased by the nanoscale dimensions of the fibre.