Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Manufacturing

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 611

Full-Text Articles in Engineering

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Enhancing Bridge Resilience And Overheight Vehicle Mitigation Through Innovative Sacrificial Cushion Systems, Aly Mousaad Aly, Marc Hoffmann Jan 2024

Enhancing Bridge Resilience And Overheight Vehicle Mitigation Through Innovative Sacrificial Cushion Systems, Aly Mousaad Aly, Marc Hoffmann

Faculty Publications

Transportation departments have made significant strides in addressing the challenges posed by the increasing weights of trucks on bridges. While there is a growing awareness of overheight vehicle collisions with bridges, implementing effective countermeasures remains limited. The susceptibility of bridges to damage from such collisions is on the rise, further exacerbated by unpredictable lateral impact forces. This study employs nonlinear impact analysis to assess the response of an unprotected vehicle-girder model, yielding realistic deformation outcomes comparable to observed impacts on the US-61 bridge. Predictions for a truck traveling at 112.65 km/h indicate deformations of 0.229 m, 0.161 m, and 0.271 …


Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2024

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin bleed out, combined with large non-linear deformation, lead to morphological variability. To understand these complex interacting phenomena, a coupled multiphysics finite element framework was developed to simulate the compaction behavior around fiber tow gap regions, which consists of coupled chemo-rheological and flow-compaction analysis. The compaction analysis incorporated a visco-hyperelastic constitutive model with anisotropic tensorial prepreg viscosity, which …


Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi Jan 2024

Energy Efficiency In Additive Manufacturing: Condensed Review, Ismail Fidan, Vivekanand Naikwadi, Suhas Alkunte, Roshan Mishra, Khalid Tantawi

Engineering Technology Faculty Publications

Today, it is significant that the use of additive manufacturing (AM) has growing in almost every aspect of the daily life. A high number of sectors are adapting and implementing this revolutionary production technology in their domain to increase production volumes, reduce the cost of production, fabricate light weight and complex parts in a short period of time, and respond to the manufacturing needs of customers. It is clear that the AM technologies consume energy to complete the production tasks of each part. Therefore, it is imperative to know the impact of energy efficiency in order to economically and properly …


Code To Combustion: Cnc Rotor Replication Using Cam, Luis Luna Dec 2023

Code To Combustion: Cnc Rotor Replication Using Cam, Luis Luna

Publications and Research

In the current landscape, computer-aided design (CAD) and computer numerical control (CNC) technologies have greatly enhanced manufacturing processes, allowing rapid and high-precision production. This project will focus on recreating a Wankel engine rotor, using SolidWorks for design and Mastercam for Computer-Aided Manufacturing (CAM) simulations. The process begins with SolidWorks, which is used for a template of a high-precision rotor model. Mastercam is then utilized for the CAM programming, allowing for the creation of intricate tool paths and tool usage simulations. This approach is vital for complex objects like the Wankel engine rotor, which demands high precision. The primary objective of …


Additive Manufacturing For Medical Education, Michael Noon Oct 2023

Additive Manufacturing For Medical Education, Michael Noon

College of Engineering Summer Undergraduate Research Program

A growing body of evidence is suggesting that anatomical knowledge, the keystone of many medical specialties, is suffering among new graduates. While a host of reasons are provided, one common thread that many point to is the decline of cadaver dissections in the classroom. Many virtual audio-visual tools are used to address this gap, yet evidence has shown their ineffectiveness. Given this gap, the high degree of flexibility found in additive manufacturing (AM), and the many uses AM has already found in the medical field, we propose its use to fill this gap, allowing for students to learn with touch …


Numerical Study Of Solar Receiver Tube With Modified Surface Roughness For Enhanced And Selective Absorptivity In Concentrated Solar Power Tower, Shawn Hatcher, Mathew Z. Farias, Jianzhi Li, Peiwen Li, Ben Xu Sep 2023

Numerical Study Of Solar Receiver Tube With Modified Surface Roughness For Enhanced And Selective Absorptivity In Concentrated Solar Power Tower, Shawn Hatcher, Mathew Z. Farias, Jianzhi Li, Peiwen Li, Ben Xu

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Concentrated solar power (CSP) is a reliable renewable energy source that is progressively lowering its cost of energy. However, the heat loss due to reflected and emitted radiation hinders the maximum achievable thermal efficiency for solar receiver tubes on the solar tower. Current solar selective coatings cannot withstand the high temperatures that come with state-of-the-art CSP towers often needing to be recoated soon after initial operation. We intend to use Inconel 718 with different additive manufacturing (AM) practices to construct surfaces that allow for more light-trapping to occur. By adjusting printing parameters, we can tailor a surface to allow for …


Effects Of Machining Parameters Of C45 Steel Applying Vegetable Lubricant With Minimum Quantity Cooling Lubrication (Mqcl), Mayur A. Makhesana, Prashant J. Bagga, Kaushik M. Patel, Jaime Taha-Tijerina Aug 2023

Effects Of Machining Parameters Of C45 Steel Applying Vegetable Lubricant With Minimum Quantity Cooling Lubrication (Mqcl), Mayur A. Makhesana, Prashant J. Bagga, Kaushik M. Patel, Jaime Taha-Tijerina

Informatics and Engineering Systems Faculty Publications and Presentations

One of the most significant performance indicators for measuring the machinability of materials is tool wear and surface roughness. Choosing the best combination of cutting parameters can help reduce production costs, which is what the manufacturing industry is interested in. At the same time, industries are always looking for an alternative to conventional flood cooling since its use creates an environmental burden and health concerns for the operators. Therefore, vegetable oil-based minimum quantity cooling lubrication (MQCL) is considered a cutting environment. Sunflower oil is utilized as base fluid in MQCL and applied to the cutting zone through a nozzle. The …


Laser-Induced Forward Transfer (Lift) Based Bioprinting Of The Collagen I With Retina Photoreceptor Cells, Md Shakil Arman, Ben Xu, Andrew Tsin, Jianzhi Li Aug 2023

Laser-Induced Forward Transfer (Lift) Based Bioprinting Of The Collagen I With Retina Photoreceptor Cells, Md Shakil Arman, Ben Xu, Andrew Tsin, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This study focuses on the 3D bioprinting of retina photoreceptor cells using a laser-induced forward transfer (LIFT) based bioprinting system. Bioprinting has a great potential to mimic and regenerate the human organoid system, and the LIFT technique has emerged as an efficient method for high-resolution micropatterning and microfabrication of biomaterials and cells due to its capability of creating precise, controlled microdroplets. In this study, the parameters for an effective femtosecond laser-based LIFT process for 3D bioprinting of collagen biomaterial were studied. Different concentrations of collagen I solutions were tested and 0.75 mg/ml to 1 mg/ml collagen Ⅰ was identified as …


Estudio Termoquímico Asistido Por Computadora De Los Polifenoles Presentes En La Fresa [Thermochemical Computer Assisted Study Of Polyphenols Presented In Strawberry], Federico Lopez, Jeimmy Rocio Bonilla Méndez, Luis Ricárdez Sandoval, Hiram Moya, Daniela Mainardi, Arturo González Quiroga, Jeffrey Leon-Pulido Jul 2023

Estudio Termoquímico Asistido Por Computadora De Los Polifenoles Presentes En La Fresa [Thermochemical Computer Assisted Study Of Polyphenols Presented In Strawberry], Federico Lopez, Jeimmy Rocio Bonilla Méndez, Luis Ricárdez Sandoval, Hiram Moya, Daniela Mainardi, Arturo González Quiroga, Jeffrey Leon-Pulido

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Las fresas son un alimento importante en Latinoamérica debido a sus componentes químicos, puesto que son una considerable fuente de calorías y polifenoles. Estos elementos son útiles por su capacidad antioxidante y otras propiedades beneficiosas para la salud. Sin embargo, la presión y la temperatura pueden llegar a afectar la integridad molecular de estos componentes, por lo tanto, en el proceso de producción de diferentes productos basados en fresas, se requiere estudiar las propiedades termoquímicas de los diferentes polifenoles presentes en esta fruta. Para ello, se extrajeron datos de las principales familias de polifenoles, antocianinas, flavanoles, flavonoles, ácidos hidroxibenzoicos y …


The Potential Of The Implementation Of Offline Robotic Programming Into Automation-Related Pedagogy, Max Rios Carballo, Xavier Brown Jun 2023

The Potential Of The Implementation Of Offline Robotic Programming Into Automation-Related Pedagogy, Max Rios Carballo, Xavier Brown

Publications and Research

In this study, the offline programming tool RoboDK is used to program industrial robots for the automation sector. The study explores the feasibility of using this non-disruptive robot programming software for classroom use; assesses how well RoboDK can be used to program various robots used in the industry; creates and tests various applications; and pinpoints technical obstacles that prevent a smooth link between offline programming and actual robots. Initial results indicate that RoboDK is an effective tool for deploying its offline programming code to a Universal Robot, UR3e. There are many potential for advanced applications. The goal of the project …


Empowering Student Success: Unlocking The Potential Of Project-Based Steel Design Education, Aly Mousaad Aly Jun 2023

Empowering Student Success: Unlocking The Potential Of Project-Based Steel Design Education, Aly Mousaad Aly

Faculty Publications

In the pursuit of student success, it is essential to acknowledge that a singular teaching style does not universally cater to all students. The educator's crucial role lies in creating an optimal learning environment that fosters students' endeavors to excel. This endeavor transcends mere classroom success or employment prospects, encompassing a broader impact on societal well-being. An experiential learning approach, where students actively engage in practical tasks, emerges as the most effective mode of instruction. Integrating project-based learning activities into the curriculum holds immense potential for enhancing student learning. Additionally, the utilization of analysis software tools like FTool and STAAD …


Comparative Cutting Fluid Study On Optimum Grinding Parameters Of Ti-6al-4v Alloy Using Flood, Minimum Quantity Lubrication (Mql), And Nanofluid Mql (Nmql), Jaime Taha-Tijerina, Immanuel A. Edinbarough Jun 2023

Comparative Cutting Fluid Study On Optimum Grinding Parameters Of Ti-6al-4v Alloy Using Flood, Minimum Quantity Lubrication (Mql), And Nanofluid Mql (Nmql), Jaime Taha-Tijerina, Immanuel A. Edinbarough

Informatics and Engineering Systems Faculty Publications and Presentations

Titanium alloys have been of paramount interest to the aerospace industry due to their attractive characteristics. However, these alloys are difficult to machine and require grinding post-processes for quality assurance of the products. Conventional grinding takes a long time and uses a flood coolant-lubrication technique, which is not cost effective nor environmentally friendly. Several studies have been performed to prove the viability and benefit of using Minimum Quantity Lubrication (MQL) with vegetable or synthetic-ester fluids. This work aims to find the optimum grinding parameters of creep feed grinding Ti-6Al-4V with a green silicon carbide wheel, using a flood lubrication system …


Thermal Transport And Physical Characteristics Of Silver-Reinforced Biodegradable Nanolubricant, Jaime Taha-Tijerina, Karla Aviña, Nicolás Antonio Ulloa-Castillo, Dulce Viridiana Melo-Maximo May 2023

Thermal Transport And Physical Characteristics Of Silver-Reinforced Biodegradable Nanolubricant, Jaime Taha-Tijerina, Karla Aviña, Nicolás Antonio Ulloa-Castillo, Dulce Viridiana Melo-Maximo

Informatics and Engineering Systems Faculty Publications and Presentations

In this investigation, the thermal transport behavior of biodegradable lubricant reinforced with silver nanostructures (AgNs) at various filler fractions of 0.01, 0.05, 0.10, and 0.20 weight percent was evaluated over a temperature scan analysis, ranging from room temperature up to 60 °C. The experimental results revealed significant gradual enhancements in thermal conductivity as AgNs concentration and evaluating temperatures were increased. These improvements showed the important role of nanostructures’ interaction within the biodegradable lubricant. The thermal conductivity performance improved for nanolubricants ranging from 6.5% at 30 °C and 0.20 wt.% AgNs content up to a maximum 32.2%, which was obtained at …


Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo May 2023

Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo

Publications and Research

The goal of the current study is to investigate cutting-edge techniques for recycling filament waste from 3D printing procedures. Appropriate waste management techniques are required to reduce this trash's harmful environmental consequences. The goal of the project is to look at new methods for recycling filament waste in order to minimize disposal and encourage reuse. To acquire data from pertinent papers and research, a thorough literature review methodology was used. The findings show that this issue may be resolved utilizing a variety of recycling techniques, including shredding, melting, and re-extrusion. The type of filament waste and the intended goal will …


Effects Of Tempering Temperature On Gas Turbine Fan Cases, Seth Utter Apr 2023

Effects Of Tempering Temperature On Gas Turbine Fan Cases, Seth Utter

Honors Scholar Theses

The project aimed to investigate the effects of tempering temperature on metals used for gas turbine engine fan cases as a major relevant concern is containing blades in during blade-out events. There are three ways to accomplish this: using a thicker metal, incorporating different materials into the case, or heat treating the metal. This project focused on the third solution: reviewing the impact toughness and hardness of fractured samples and their equivalent ductile-to-brittle transition shear faces. Given its availability, 1045 steel, as opposed to aerospace grade metals, was used for in-house testing. The data obtained from these experiments were then …


Naphtha Characterization (Piona, Density, Distillation Curve And Sulfur Content): An Origin Comparison, Aline Pioli Silva, Juliana Otavia Bahú, Renato Soccol Jr., Leonardo Rodriguez-Urrego, William Stive Fajardo-Moreno, Hiram Moya, Jeffrey Leon-Pulido, Víktor Oswaldo Cárdenas Concha Apr 2023

Naphtha Characterization (Piona, Density, Distillation Curve And Sulfur Content): An Origin Comparison, Aline Pioli Silva, Juliana Otavia Bahú, Renato Soccol Jr., Leonardo Rodriguez-Urrego, William Stive Fajardo-Moreno, Hiram Moya, Jeffrey Leon-Pulido, Víktor Oswaldo Cárdenas Concha

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Naphtha is an important distillation product of crude oil, and is used as a raw material for first-generation products such as ethylene, propylene, gasoline, xylene (BTX), and others. However, due to the different sources of crude oil, differences in naphtha composition impact the quality of conversion processes. Parameters such as pressure, charge flow, and temperature need to be adjusted for conversion efficiency. This work aims to compare naphtha samples from different origins, through the analysis of distillation curve (ASTM D86), density (ASTM D4052), total sulfur (ASTM D4294), and n-paraffins, iso-paraffins, olefins, naphthene, and aromatics (PIONA, ASTM D5134). Among these parameters …


Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins Mar 2023

Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins

Faculty Publications

Additive manufacturing techniques enable a wide range of possibilities for novel radiation detectors spanning simple to highly complex geometries, multi-material composites, and metamaterials that are either impossible or cost prohibitive to produce using conventional methods. The present work identifies a set of promising formulations of photocurable scintillator resins capable of neutron-gamma pulse shape discrimination (PSD) to support the additive manufacturing of fast neutron detectors. The development of these resins utilizes a step-by-step, trial-and-error approach to identify different monomer and cross-linker combinations that meet the requirements for 3D printing followed by a 2-level factorial parameter study to optimize the radiation detection …


Study Of The Graphene Energy Absorbing Layer And The Viscosity Of Sodium Alginate In Laser-Induced- Forward-Transfer (Lift) Bioprinting, Shuqi Zhou, Jianzhi Li, Ben Xu Feb 2023

Study Of The Graphene Energy Absorbing Layer And The Viscosity Of Sodium Alginate In Laser-Induced- Forward-Transfer (Lift) Bioprinting, Shuqi Zhou, Jianzhi Li, Ben Xu

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Laser induced forward transfer (LIFT) bioprinting has been viewed as a new and actively developed three-dimensional bioprinting technology due to its high accuracy and good cell viability. The printing quality is highly dependent on the jet formation and its stability in the LIFT bioprinting process. The objective of this study is to investigate the effect of a graphene Energy Absorbing Layer (EAL) and alginate hydrogel (SA) (w.t. 1% and 2%) viscosity on jet generation in the LIFT bioprinting process. Since SA exhibits a shear-thinning behavior, it is a non-Newtonian fluid. The effect of EAL thickness and SA’s viscosity were addressed …


Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi Jan 2023

Exploring Additive Manufacturing In A Space Environment - A Capstone Design Project Experience, Zain Zafar Khan, Zachary Alan Sobelman, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

The employment of additive manufacturing in the non-standard environments like space, ships, or submarines has the potential to be an advanced utility not only in the pre-flight production of aerospace components and structures, but also for the onboard manufacturing of components and tools necessary for future space missions. For example, the ability to produce tools and structural components on the International Space Station can provide the space community the opportunity to make repairs and upgrades to the space station without wasting time and resources transporting such materials through additional missions. Additive manufacturing would allow for space missions to use on …


A New Course In Defense Manufacturing – An Introduction To Shipbuilding, Alley C. Butler Jan 2023

A New Course In Defense Manufacturing – An Introduction To Shipbuilding, Alley C. Butler

Manufacturing & Industrial Engineering Faculty Publications and Presentations

This paper discusses the development and deployment of a new course in DMEI (Defense Manufacturing Engineering Innovation) titled, “Introduction to Shipbuilding.” This course has been taught using Zoom since 2021 at both the University of Texas Rio Grande Valley, a Hispanic Serving Institution, and Virginia State University, a Historically Black University. After a brief literature review, an outline of the course is presented with topics including the maritime market for shipbuilding, economics of shipbuilding, the classification agencies, metallurgy and welding processes, ship structure and assembly, shipyard layout, accuracy control, and shipbuilding planning and scheduling. Difficulties in obtaining an appropriate textbook …


A Survey Of Smart Manufacturing For High-Mix Low-Volume Production In Defense And Aerospace Industries, Tanjida Tahmina, Mauro Garcia, Zhaohui Geng, Bopaya Bidanda Oct 2022

A Survey Of Smart Manufacturing For High-Mix Low-Volume Production In Defense And Aerospace Industries, Tanjida Tahmina, Mauro Garcia, Zhaohui Geng, Bopaya Bidanda

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Defense and aerospace industries usually possess unique high-mix low-volume production characteristics. This uniqueness generally calls for prohibitive production costs and long production lead-time. One of the major trends in advanced, smart manufacturing is to be more responsive and better readiness while ensuring the same or higher production quality and lower cost. This study reviews the state-of-the-art manufacturing technologies to solve these issues and previews two levels of flexibility, i.e., system and process, that could potentially reduce the costs while increasing the production volume in such a scenario. The main contribution of the work includes an assessment of the current solutions …


Metaversekg: Knowledge Graph For Engineering And Design Application In Industrial Metaverse, Utkarshani Jaimini, Tongtao Zhang, Georgia Olympia Brikis Oct 2022

Metaversekg: Knowledge Graph For Engineering And Design Application In Industrial Metaverse, Utkarshani Jaimini, Tongtao Zhang, Georgia Olympia Brikis

Publications

While the term Metaverse was first coined by the author Neal Stephenson in 1992 in his science fiction novel “Snow Crash”, today the vision of an integrated virtual world is becoming a reality across different sectors. Applications in gaming and consumer products are gaining traction, industrial metaverse applications are, still in their early stages of development with one of the challenges being interoperability across various metaverse development platforms and existing software tools. In this work we propose the use of a knowledge graph based semantic data exchange layer, the Metaverse Knowledge Graph, to enable seamless transfer of information across platforms. …


Reliability Study Of A New Electromechanical Device Designed To Measure The Relative Dorsal Mobility Of The First Ray Of The Foot, Philippe Passeraub Oct 2022

Reliability Study Of A New Electromechanical Device Designed To Measure The Relative Dorsal Mobility Of The First Ray Of The Foot, Philippe Passeraub

Faculty Publications

Introduction: A new electromechanical instrument has been developed to measure relative dorsal mobility of the first ray in an objective and reliable way by simulating ground reaction forces during gait. This device equally applies a standardized, electronically controlled, and precise force under the first metatarsal head M1 as well as under the heads of the lesser metatarsals M2 to M5. The relative dorsal mobility between these two bearings is then measured. The purpose of this study is to assess the intra- and inter-examiners reliabilities of the measurements obtained with this device. Methods: The protocol included two examiners and 36 feet …


Ultrafast Laser Direct Writing Of Conductive Patterns On Polyimide Substrate, Ishrat Jahan Biswas, Enrique Contreras Lopez, Farid Ahmed, Jianzhi Li Sep 2022

Ultrafast Laser Direct Writing Of Conductive Patterns On Polyimide Substrate, Ishrat Jahan Biswas, Enrique Contreras Lopez, Farid Ahmed, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Laser direct writing (LDW) is a fast and cost-effective method for printing conductive patterns in flexible polymer substrates. The electrical, chemical, and mechanical properties of polyimide (PI) make it an attractive material choice for laser writing of conductive circuits in such polymer. Electrically insulating PI has shown great potential for flexible printed electronics as LDW enables selective carbonization in the bulk of such material leading to the formation of conductive lines. However, existing studies in this area reveal a few key limitations of this approach including limited conductivity of written structures and fragility of carbonized PI. Therefore, more research is …


A Numerical Study On The Powder Flowability, Spreadability, Packing Fraction In Powder Bed Additive Manufacturing, Yeasir Mohammad Akib, Ehsan Marzbanrad, Farid Ahmed, Jianzhi Li Sep 2022

A Numerical Study On The Powder Flowability, Spreadability, Packing Fraction In Powder Bed Additive Manufacturing, Yeasir Mohammad Akib, Ehsan Marzbanrad, Farid Ahmed, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

The powder bed fusion (PBF) process is widely adopted in many manufacturing industries because of its capability to 3D print complex parts with micro-scale precision. In PBF process, a thermal energy source is used to selectively fuse powder particles layer by layer to build a part. The build quality in the PBF process primarily depends on the thermal energy deposition and properties of the powder bed. Powder flowability, powder spreading, and packing fraction are key factors that determine the properties of a powder bed. Therefore, the study of these process parameters is essential to better understand the PBF process. In …


Synthesizing And Printing Of Tin Oxide Nanoparticles Using A Single Ultrafast Laser System: A Feasibility Study, Enrique Contreras Lopez, Farid Ahmed, Jianzhi Li Sep 2022

Synthesizing And Printing Of Tin Oxide Nanoparticles Using A Single Ultrafast Laser System: A Feasibility Study, Enrique Contreras Lopez, Farid Ahmed, Jianzhi Li

Manufacturing & Industrial Engineering Faculty Publications and Presentations

In laser-based manufacturing, processing setup customization is one of the popular approaches used to enhance diversity in material processing using a single laser. In this study, we propose setup design modification of an ultrafast laser system to demonstrate both Tin Oxide (SnO2) nanoparticle synthesis from bulk metal, and post printing of said nanoparticles using Laser Induced Forward Transfer (LIFT) method. Using the Pulse Laser Ablation in Liquid (PLA-L) method, nanoparticles were synthesized from a bulk tin metal cube submerged in distilled water. Such nanoparticles dispersed in water can form colloidal ink that can be used for different printed electronics applications. …


Robotic Manufacturing System For Unattended Machining And Inspection Of Graphite Bipolar Flow Field Plates For Proton Exchange Membrane Fuel Cells, Vladimir Gurau, Ryan Kent Sep 2022

Robotic Manufacturing System For Unattended Machining And Inspection Of Graphite Bipolar Flow Field Plates For Proton Exchange Membrane Fuel Cells, Vladimir Gurau, Ryan Kent

Department of Manufacturing Engineering Faculty Research and Publications

A single robot-based manufacturing system for unattended machining and inspection of graphite bipolar flow field plates for proton exchange membrane fuel cells is designed and integrated for demonstration and validation. Unlike most robotic manufacturing systems where an industrial robot is used for tending an automated tool such as a computer numerical control machine, in the present system the industrial robot performs all manufacturing operations, including machining the flow fields on both sides of the plates, changing the tools, handling the plates, vacuuming the plates and the workholding device of graphite dust, flipping the plates, air blowing them and performing machine …


Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf Sep 2022

Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf

Faculty Publications

Consolidation of pure molybdenum through laser powder bed fusion and other additive manufacturing techniques is complicated by a high melting temperature, thermal conductivity and ductile-to-brittle transition temperature. Nano-sized SiC particles (0.1 wt%) were homogeneously mixed with molybdenum powder and the printing characteristics, chemical composition, microstructure, mechanical properties were compared to pure molybdenum for scan speeds of 100, 200, 400, and 800 mm/s. The addition of SiC improved the optically determined density and flexural strength at 400 mm/s by 92% and 80%, respectively. The oxygen content was reduced by an average of 52% over the four scan speeds analyzed. Two mechanisms …


Turning Of Carbon Fiber Reinforced Polymer (Cfrp) Composites: Process Modeling And Optimization Using Taguchi Analysis And Multi-Objective Genetic Algorithm, S. M. Abdur Rob, Anil K. Srivastava Sep 2022

Turning Of Carbon Fiber Reinforced Polymer (Cfrp) Composites: Process Modeling And Optimization Using Taguchi Analysis And Multi-Objective Genetic Algorithm, S. M. Abdur Rob, Anil K. Srivastava

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Carbon Fiber Reinforced Polymer (CFRP) composites have been widely used in aerospace, automotive, nuclear, and biomedical industries due to their high strength-to-weight ratio, corrosion resistance, durability, and excellent thermo-mechanical properties in non-oxidative atmospheres. Machining of CFRP composites has always been a challenge for manufacturers. In this research, a comparative study was performed between the optimal machining parameters of coated and uncoated carbide inserts obtained from the Multi-Objective Genetic Algorithm during turning of CFRP composites. It was found that coated carbide inserts provide lower tool wear and surface roughness, but higher cutting forces compared to those of uncoated carbide inserts …