Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Engineering

Experiments And Simulations Of Liquid Mass Gauging And Slosh Dynamics In Microgravity, Jedediah Morse Storey Dec 2023

Experiments And Simulations Of Liquid Mass Gauging And Slosh Dynamics In Microgravity, Jedediah Morse Storey

Theses and Dissertations

Advancements in liquid propellant management science and technologies are key to increasing safety, decreasing cost, and increasing payload mass of space missions. Propellant usually comprises a large portion of the total mass of launch vehicles and spacecraft, so liquid propellant sensing, as well as predicting and controlling the motion of it, are important. Electrical Capacitance Tomography (ECT) is an emerging sensing technology that is capable of measuring the distribution of liquid anywhere inside of a tank, potentially making it useful for measuring slosh and gauging mass. An ECT-instrumented tank was successfully tested in microgravity for the first time. Basics of …


Computational Tools For Modeling And Simulation Of Sooting Turbulent Non-Premixed Flames, Victoria B. Stephens Dec 2022

Computational Tools For Modeling And Simulation Of Sooting Turbulent Non-Premixed Flames, Victoria B. Stephens

Theses and Dissertations

Turbulent combustion systems are physically complex processes that involve many interdependent phenomena---including turbulent fluid dynamics, multi-component mass transfer, convective and radiative heat transfer, and multiphase flow---that occur over a wide range of length and time scales. Modeling and simulation studies complement experimental work by implementing and validating models and providing predictive capabilities, but current software tools are often limited by a lack of standardization and best practices, non-robust implementation, or over-specialization. Some topics in combustion CFD research, notably radiative heat transfer and soot modeling, are critically underrepresented in simulation studies as a result of software limitations. This project establishes and …


Development Of Alternative Air Filtration Materials And Methods Of Analysis, Ivan Philip Beckman Dec 2022

Development Of Alternative Air Filtration Materials And Methods Of Analysis, Ivan Philip Beckman

Theses and Dissertations

Clean air is a global health concern. Each year more than seven million people across the globe perish from breathing poor quality air. Development of high efficiency particulate air (HEPA) filters demonstrate an effort to mitigate dangerous aerosol hazards at the point of production. The nuclear power industry installs HEPA filters as a final line of containment of hazardous particles. Advancement air filtration technology is paramount to achieving global clean air. An exploration of analytical, experimental, computational, and machine learning models is presented in this dissertation to advance the science of air filtration technology. This dissertation studies, develops, and analyzes …


Observing And Modeling Water Electrolysis Performance Limitations Attributed To Gas Generation And Porous Media Properties, Joseph S. Lopata Apr 2022

Observing And Modeling Water Electrolysis Performance Limitations Attributed To Gas Generation And Porous Media Properties, Joseph S. Lopata

Theses and Dissertations

Water electrolysis has been a simple method of hydrogen production for over two centuries, but the exploration of its nuances is still accelerating. This work compiles numerous mechanisms via which electrolysis efficiency is influenced by phenomena that occur within, adjacent to, and nearby functional porous media. Computational and experimental methods are applied to electrolysis systems to quantify the impact of twophase flow patterns and porous media properties on energy losses, primarily those linked directly to the presence of the gas phase.

First, an introduction to the chemistry and operating principle of water electrolysis is presented and relevant works from the …


Optimizing Design Parameters For Active Flow Control Boundary-Layer Fence Performance Enhancement On A Delta Wing, Nathan L. Tedder Mar 2021

Optimizing Design Parameters For Active Flow Control Boundary-Layer Fence Performance Enhancement On A Delta Wing, Nathan L. Tedder

Theses and Dissertations

Utilizing computational fluid dynamic (CFD) simulations, the presented study is able to further the investigation of replicating and improving upon the performance of a NACA 0012 cropped half-span delta-wing at high angles-of-attack with an active flow control fluidic fence via wall-normal, steady blowing from an optimized single chordwise slot located at z/b = 70%,. The data is generated using CREATE-AV Kestrel v10.1rc5 CFD software on the Department of Defense High Performance Computing systems. The flight regime is held constant at a Mach number of 0.18 and a Reynolds number (Re) of 5.0 x 105, based on the root …


Survey Of Airflow Around A Heated Manikin As A Simulated Aeromedical Evacuation Patient On A Litter With Computational Fluid Dynamics Models, George P. Lemmer Sep 2020

Survey Of Airflow Around A Heated Manikin As A Simulated Aeromedical Evacuation Patient On A Litter With Computational Fluid Dynamics Models, George P. Lemmer

Theses and Dissertations

Aeromedical Evacuations remain the predominant method used to transport patients from forward deployed areas of operations to secure locations with more robust medical infrastructure. Transportation of chemical warfare casualties and infectious patients require additional attention to prevent cross contamination. Specific airflow characteristics paired with environmental control system settings are a gap in scholarly literature. Based on the available literature computational fluid dynamics models were created to simulate the airflow around a patient represented by human geometry using commercially available software. In order to compare simulated and experimental results a heated manikin was placed in the MURPHEE aerosol exposure chamber and …


Design And Analysis Of A Disk-Oriented Engine Combustor, Bennett M. Staton Mar 2020

Design And Analysis Of A Disk-Oriented Engine Combustor, Bennett M. Staton

Theses and Dissertations

In a novel approach to gas-turbine power production, an engine was designed and analyzed to use both a single-stage centrifugal compressor and single-stage radial in- ow turbine configured back-to-back. This air path reduced the axial length of the engine up to 60%, providing additional modularity in a gas-turbine engine that could be used to improve mobility of ground-based power units or increase the survivability of aircraft through the use of distributive propulsion. This increased modularity was made possible by the use of a circumferential ow combustor that substantially decreased the axial length of the burner and negated the need to …


Aerodynamic Design Optimization Of A Locomotive Nose Fairing For Reducing Drag, Chad Lamar Stucki Apr 2019

Aerodynamic Design Optimization Of A Locomotive Nose Fairing For Reducing Drag, Chad Lamar Stucki

Theses and Dissertations

Rising fuel cost has motivated increased fuel efficiency for freight trains. At cruising speed,the largest contributing factor to the fuel consumption is aerodynamic drag. As a result of stagnationand flow separation on and around lead and trailing cars, the first and last railcars experiencegreater drag than intermediate cars. Accordingly, this work focused on reducing drag on lead locomotivesby designing and optimizing an add-on nose fairing that is feasible for industrial operation.The fairing shape design was performed via computational fluid dynamic (CFD) software.The simulations consisted of two in-line freight locomotives, a stretch of rails on a raised subgrade,a computational domain, and …


Thermochemical Non-Equilibrium Models For Weakly Ionized Hypersonic Flows With Application To Slender-Body Wakes, Matthew P. Clarey Sep 2018

Thermochemical Non-Equilibrium Models For Weakly Ionized Hypersonic Flows With Application To Slender-Body Wakes, Matthew P. Clarey

Theses and Dissertations

The current resurgence of interest in hypersonic technologies has warranted an inquiry into the commonly employed thermochemical non-equilibrium models within computational fluid dynamic (CFD) simulations. Additionally, research has historically focused on forebody flowfields, while studies of the complex wake structure have remained elusive. Although the forebody is of significance for vehicle analysis, the wake presents many exploitative characteristics. This dissertation aimed to address these two deficits. First, two three-temperature non-equilibrium models were developed, increasing the fidelity of hypersonic solutions above that of the legacy two-temperature model. The models were then investigated via zero-dimensional simulations, to detail the non-equilibrium processes, and …


Control, Characterization, And Cooling Of An Ultra-Compact Combustor, Kevin J. Demarco Mar 2018

Control, Characterization, And Cooling Of An Ultra-Compact Combustor, Kevin J. Demarco

Theses and Dissertations

An Ultra-Compact Combustor (UCC) is novel alternative to axial flow combustors commonly used in gas turbine engines. The UCC offers multiple benefits to engine design. First, the UCC aims to increase the thrust-to-weight ratio of an aircraft gas turbine engine by decreasing the size, and thus weight, of the engine's combustor. This is done by utilizing a Circumferential Cavity (CC) wrapped around the main core flow which hosts the combustion event, allowing a shortened combustor length. Second, within the CC, the combusting mixture is subjected to a high centrifugal loading which aids combustion by improving both flame propagation and residence …


Computational Investigation Using Bleed As A Method Of Shock Stabilization, Dayle L. Chang Mar 2018

Computational Investigation Using Bleed As A Method Of Shock Stabilization, Dayle L. Chang

Theses and Dissertations

Shock-wave/boundary layer interactions (SWBLI) produce undesirable dynamic loads and separated unsteady flows, adversely impacting the performance and structural integrity of supersonic vehicles. Computational fluid dynamics (CFD) is a successful tool in experimental planning and shows promise as a critical tool in understanding and mitigating negative effects of SWBLI. The goal of this research is to demonstrate the effect of bleed holes on shock stability using the OVERFLOW CFD solver to inform the planning of an Air Force Research Laboratory (AFRL) SWBLI wind tunnel experiment. First, a two-dimensional, flat plate, single-hole configuration was developed. Massflow discrepancies of 14.8% were initially observed …


The Development Of A Vertical-Axis Wind Turbine Wake Model For Use In Wind Farm Layout Optimization With Noise Level Constraints, Eric Blaine Tingey Mar 2017

The Development Of A Vertical-Axis Wind Turbine Wake Model For Use In Wind Farm Layout Optimization With Noise Level Constraints, Eric Blaine Tingey

Theses and Dissertations

This thesis focuses on providing the means to use vertical-axis wind turbines (VAWTs) in wind farms as an alternative form of harnessing wind energy in offshore and urban environments where both wake and acoustic effects of turbines are important considerations. In order for VAWTs to be used in wind farm layout analysis and optimization, a reduced-order wake model is needed to calculate velocities around a turbine quickly and accurately. However, a VAWT wake model has not been available to accomplish this task. Using vorticity data from computational fluid dynamic (CFD) simulations of VAWTs and cross-validated Gaussian distribution and polynomial surface …


Implementations Of Fourier Methods In Cfd To Analyze Distortion Transfer And Generation Through A Transonic Fan, Marshall Warren Peterson Jun 2016

Implementations Of Fourier Methods In Cfd To Analyze Distortion Transfer And Generation Through A Transonic Fan, Marshall Warren Peterson

Theses and Dissertations

Inlet flow distortion is a non-uniform total pressure, total temperature, or swirl (flow angularity) condition at an aircraft engine inlet. Inlet distortion is a critical consideration in modern fan and compressor design. This is especially true as the industry continues to increase the efficiency and operating range of air breathing gas turbine engines. The focus of this paper is to evaluate the Computational Fluid Dynamics (CFD) Harmonic Balance (HB) solver in STAR-CCM+ as a reduced order method for capturing inlet distortion as well as the associated distortion transfer and generation. New methods for quantitatively describing and analyzing distortion transfer and …


Liquid Fuel Film Cooling: A Cfd Analysis With Hydrocarbon Fuel, Jacob D. Bills Mar 2016

Liquid Fuel Film Cooling: A Cfd Analysis With Hydrocarbon Fuel, Jacob D. Bills

Theses and Dissertations

Cooling of liquid rocket engine combustion chambers and nozzles is a critical component to liquid rocket engine design. A common method of cooling is liquid fuel film cooling. Liquid fuel is injected along the surface of the wall to act as a barrier against the core combustion gases. A numerical model is developed for simulating liquid fuel _lm cooling in a rocket engine using a hydrocarbon fuel. The model incorporates turbulent multiphase ow with species transport within the commercial ANSYS® Fluent CFD software. Conjugate heat transfer is simulated through walls containing embedded cooling channels. A novel User Defined Function is …


Analysis Of High Fidelity Turbomachinery Cfd Using Proper Orthogonal Decomposition, Ronald Alex Spencer Mar 2016

Analysis Of High Fidelity Turbomachinery Cfd Using Proper Orthogonal Decomposition, Ronald Alex Spencer

Theses and Dissertations

Assessing the impact of inlet flow distortion in turbomachinery is desired early in the design cycle. This thesis introduces and validates the use of methods based on the Proper Orthogonal Decomposition (POD) to analyze clean and 1/rev static pressure distortion simulation results at design and near stall operating condition. The value of POD comes in its ability to efficiently extract both quantitative and qualitative information about dominant spatial flow structures as well as information about temporal fluctuations in flow properties. Observation of the modes allowed qualitative identification of shock waves as well as quantification of their location and range of …


Using Star-Ccm+ To Evaluate Multi-User Collaboration In Cfd, Kasey Johnson Webster Oct 2015

Using Star-Ccm+ To Evaluate Multi-User Collaboration In Cfd, Kasey Johnson Webster

Theses and Dissertations

The client-server architecture of STAR-CCM+ allows multiple users to collaborate on a simulation set-up. The effectiveness of collaboration with this architecture is tested and evaluated on five models. The testing of these models is a start to finish set-up of an entire simulation excluding computational time for generating mesh and solving the solution. The different models have distinct differences which test every operation that would be used in a general CFD simulation. These tests focus on reducing the time spent preparing the geometry to be meshed, including setting up for a conformal mesh between multiple regions in conjugate heat transfer …


Hot Streak Characterization In Serpentine Exhaust Nozzles, Darrell S. Crowe Dec 2014

Hot Streak Characterization In Serpentine Exhaust Nozzles, Darrell S. Crowe

Theses and Dissertations

Modern aircraft of the United States Air Force face increasingly demanding cost, weight, and survivability requirements. Serpentine exhaust nozzles within an embedded engine allow a weapon system to fulfill mission survivability requirements by providing denial of direct line-of-sight into the high-temperature components of the engine. Recently, aircraft have experienced material degradation and failure along the aft deck due to extreme thermal loading. Failure has occurred in specific regions along the aft deck where concentrations of hot gas have come in contact with the surface causing hot streaks. The prevention of these failures will be aided by the accurate prediction of …


Analysis And Compression Of Large Cfd Data Sets Using Proper Orthogonal Decomposition, Trevor Jon Blanc Jul 2014

Analysis And Compression Of Large Cfd Data Sets Using Proper Orthogonal Decomposition, Trevor Jon Blanc

Theses and Dissertations

Efficient analysis and storage of data is an integral but often challenging task when working with computation fluid dynamics mainly due to the amount of data it can output. Methods centered around the proper orthogonal decomposition were used to analyze, compress, and model various simulation cases. Two different high-fidelity, time-accurate turbomachinery simulations were investigated to show various applications of the analysis techniques. The first turbomachinery example was used to illustrate the extraction of turbulent coherent structures such as traversing shocks, vortex shedding, and wake variation from deswirler and rotor blade passages. Using only the most dominant modes, flow fields were …


Freedrop Testing And Cfd Simulation Of Ice Models From A Cavity Into Supersonic Flow, Thomas J. Flora Sep 2012

Freedrop Testing And Cfd Simulation Of Ice Models From A Cavity Into Supersonic Flow, Thomas J. Flora

Theses and Dissertations

Weapon release at supersonic speeds from an internal bay is highly advantageous. For this reason, both experimental and numerical methods were used to investigate store separation from a cavity (L=D=4.5) into Mach 2.94 flow. The experiment used a piezoresistive pressure transducer, Schlieren and high-speed photography for data acquisition. The computational solution used the OVERFLOW solver. A sphere and a Mk-82, scaled to 1:20, were formed using frozen tap water. The sphere model was freedrop tested experimentally and computationally, while the sub-scale store shaped model was freedrop tested experimentally. The total pressure was varied to alter the dynamic response of the …


Multi-Processor Computation Of Thrombus Growth And Embolization In A Model Of Blood-Biomaterial Interaction Based On Fluid Dynamics, Brandon Thomas Andersen Apr 2012

Multi-Processor Computation Of Thrombus Growth And Embolization In A Model Of Blood-Biomaterial Interaction Based On Fluid Dynamics, Brandon Thomas Andersen

Theses and Dissertations

This work describes the development and testing of a real-time three-dimensional computational fluid dynamics simulation of thrombosis and embolization to be used in the design of blood-contacting devices. Features of the model include the adhesion and aggregation of blood platelets on device material surfaces, shear and chemical activation of blood platelets, and embolization of platelet aggregates due to shear forces. As thrombus develops, blood is diverted from its regular flow field. If shear forces on a thrombus are sufficient to overcome the strength of adhesion, the thrombus is dislodged from the wall. Development of the model included preparing thrombosis and …


Influence Of Supraglottal Geometry And Modeling Choices On The Flow-Induced Vibration Of A Computational Vocal Fold Model, Timothy E. Shurtz Nov 2011

Influence Of Supraglottal Geometry And Modeling Choices On The Flow-Induced Vibration Of A Computational Vocal Fold Model, Timothy E. Shurtz

Theses and Dissertations

Computational models of the flow-induced vibrations of the vocal folds are powerful tools that can be used in conjunction with physical experiments to better understand voice production. This thesis research has been performed to contribute to the understanding of vocal fold dynamics as well as several aspects of computational modeling of the vocal folds. In particular, the effects of supraglottal geometry have been analyzed using a computational model of the vocal folds and laryngeal airway. In addition, three important computational modeling parameters (contact line location, Poisson's ratio, and symmetry assumptions) have been systematically varied to determine their influence on model …


A Computational Fluid Dynamics Feature Extraction Method Using Subjective Logic, Clifton H. Mortensen Jul 2010

A Computational Fluid Dynamics Feature Extraction Method Using Subjective Logic, Clifton H. Mortensen

Theses and Dissertations

Computational fluid dynamics simulations are advancing to correctly simulate highly complex fluid flow problems that can require weeks of computation on expensive high performance clusters. These simulations can generate terabytes of data and pose a severe challenge to a researcher analyzing the data. Presented in this document is a general method to extract computational fluid dynamics flow features concurrent with a simulation and as a post-processing step to drastically reduce researcher post-processing time. This general method uses software agents governed by subjective logic to make decisions about extracted features in converging and converged data sets. The software agents are designed …


Cfd Analysis Of Experimental Wing And Winglet For Falconlaunch 8 And The Exfit Program, Benjamin P. Switzer Mar 2010

Cfd Analysis Of Experimental Wing And Winglet For Falconlaunch 8 And The Exfit Program, Benjamin P. Switzer

Theses and Dissertations

Reusable launch vehicles have many benefits over their expendable counterparts. These benefits range from cost reductions to increased functionality of the vehicles. Further research is required in the development of the technology necessary for reusable launch vehicles to come to fruition. The Air Force Institute of Technology’s future involvement in the ExFIT program will entail designing and testing of a new wing tip mounted vertical stabilizer in the hypersonic regime. One proposed venue for experimentation is to utilize the United States Air Force Academy’s FalconLAUNCH Program which annually designs, builds, and launches a sounding rocket capable of reaching hypersonic speeds. …


Design Of A Three-Passage Low Reynolds Number Turbine Cascade With Periodic Flow Conditions, Daniel R. Rogers Nov 2008

Design Of A Three-Passage Low Reynolds Number Turbine Cascade With Periodic Flow Conditions, Daniel R. Rogers

Theses and Dissertations

A numerical method for modeling a low Reynolds number turbine blade, the L1M, is presented along with the pitfalls encountered. A laminar solution was confirmed to not accurately predict the flow features known in low Reynolds number turbine blade flow. Three fully turbulent models were then used to try to predict the separation and reattachment of the flow. These models were also found to be insufficient for transitioning flows. A domain was created to manually trip the laminar flow to turbulent flow using a predictive turbulence transition model. The trip in the domain introduced an instability in the flow field …


Parametric Optimization Design System For A Fluid Domain Assembly, Matthew Jackson Fisher Apr 2008

Parametric Optimization Design System For A Fluid Domain Assembly, Matthew Jackson Fisher

Theses and Dissertations

Automated solid modeling, integrated with computational fluid dynamics (CFD) and optimization of a 3D jet turbine engine has never been accomplished. This is due mainly to the computational power required, and the lack of associative parametric modeling tools and techniques necessary to adjust and optimize the design. As an example, the fluid domain of a simple household fan with three blades may contain 500,000 elements per blade passage. Therefore, a complete turbine engine that includes many stages, with sets of thirty or more blades each, will have hundreds of millions of elements. The fluid domains associated with each blade creates …


Comparative Study Of Aerodynamic Interference During Aft Dispense Of Munitions, Matthew G. Burkinshaw Sep 2007

Comparative Study Of Aerodynamic Interference During Aft Dispense Of Munitions, Matthew G. Burkinshaw

Theses and Dissertations

Based on forthcoming USAF needs, an investigation was launched to further the understanding of aft dispense of munitions in a high-speed environment. A computational fluid dynamics (CFD) study was performed followed by a wind tunnel experiment. The study consisted of a strut-mounted cone simulating a parent vehicle and a sting mounted cone-cylinder store situated directly behind the cone. The CFD modeled the test objects inside a supersonic wind tunnel in which the experiments took place. The CFD study consisted of evaluating a new strut designed to reduce asymmetry in the airflow aft of the cone. The CFD study also included …


Numerical Simulation Of Plasma-Based Actuator Vortex Control Of A Turbulent Cylinder Wake, Nathan Keith Mcmullin Sep 2006

Numerical Simulation Of Plasma-Based Actuator Vortex Control Of A Turbulent Cylinder Wake, Nathan Keith Mcmullin

Theses and Dissertations

A numerical study has been performed to investigate the mechanics of the turbulent wake of a circular cylinder that is controlled by a plasma actuator. The numerical investigation implements a straightforward moving wall boundary condition to model the actuator's effects on the flow. Validations of the moving wall for this simulation are set forth with the understanding that the moving wall can model the plasma actuator bulk flow effects at a distance downstream and not in a region near or on the plasma actuator. The moving wall boundary condition is then applied to a circular cylinder at a Reynolds number …


Dynamic Aeroelastic Analysis Of Wing/Store Configurations, Gregory H. Parker Dec 2005

Dynamic Aeroelastic Analysis Of Wing/Store Configurations, Gregory H. Parker

Theses and Dissertations

Limit-cycle oscillation, or LCO, is an aeroelastic phenomenon characterized by limited amplitude, self-sustaining oscillations produced by fluid-structure interactions. In order to study this phenomenon, code was developed to interface a modal structural model with a commercial computational fluid dynamics program. LCO was simulated for a rectangular wing, referred to as the Goland+ wing. It was determined that the aerodynamic nonlinearity responsible for LCO in the Goland+ wing was the combination of strong trailing-edge and lambda shocks which periodically appear and disappear. This mechanism limited the flow of energy into the structure which quenched the growth of the flutter, resulting …


Heat Transfer To The Inclined Trailing Wall Of An Open Cavity, Orval A. Powell Mar 1999

Heat Transfer To The Inclined Trailing Wall Of An Open Cavity, Orval A. Powell

Theses and Dissertations

Experimental and computational heat transfer investigations were performed on a cavity with an inclined trailing wall (20-degrees to the horizontal), simulating one under investigation for use in a scramjet engine. Heat transfer data are reported in the form of Stanton number obtained using a curve fit to the recorded transient surface temperature history under cold flow conditions. Ascending from the reattachment point, the Stanton number increased by nearly 50% due to flow compression. This effect of flow compression was also evident at the junction of the cavity floor and inclined trailing wall, where the Stanton number also increased by 50%. …


A Variable-Complexity Modeling Approach To Scramjet Fuel Injection Array Design Optimization, Michael D. Payne Mar 1998

A Variable-Complexity Modeling Approach To Scramjet Fuel Injection Array Design Optimization, Michael D. Payne

Theses and Dissertations

The analysis of fuel air mixing in a scramjet is often accomplished either with Computational Fluid Dynamics (CFD) algorithms or through experimental research. These approaches, while accurate and reliable, are extremely expensive and thus not well suited for use with conventional design optimization methods. In this investigation, Variable Complexity Modeling (VCM) is used to significantly reduce the number of complex, expensive analyses required to optimize the design of a scramjet fuel injection array. A design problem formulation for a lateral transverse injection array is developed and a VCM approach to design optimization is conducted in two stages. Initially, a simplified …