Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Open Access Dissertations

Pure sciences

Aerospace Engineering

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Gravity-Assist Trajectories To Venus, Mars, And The Ice Giants: Mission Design With Human And Robotic Applications, Kyle M. Hughes Dec 2016

Gravity-Assist Trajectories To Venus, Mars, And The Ice Giants: Mission Design With Human And Robotic Applications, Kyle M. Hughes

Open Access Dissertations

Gravity-assist trajectories to Uranus and Neptune are found (with the allowance of impulsive maneuvers using chemical propulsion) for launch dates ranging from 2024 to 2038 for Uranus and 2020 to 2070 for Neptune. Solutions are found using a patched conic model with analytical ephemeris via the Satellite Tour Design Program (STOUR), originally developed at the Jet Propulsion Laboratory (JPL). Delivered payload mass is computed for all solutions for select launch vehicles, and attractive solutions are identified as those that deliver a specified amount of payload mass into orbit at the target body in minimum time. The best cases for each …


Implementing And Testing A Panel-Based Method For Modeling Acoustic Scattering From Cfd Input, S. Hales Swift Aug 2016

Implementing And Testing A Panel-Based Method For Modeling Acoustic Scattering From Cfd Input, S. Hales Swift

Open Access Dissertations

Exposure of sailors to high levels of noise in the aircraft carrier deck environment is a problem that has serious human and economic consequences. A variety of approaches to quieting exhausting jets from high-performance aircraft are undergoing development. However, testing of noise abatement solutions at full-scale may be prohibitively costly when many possible nozzle treatments are under consideration. A relatively efficient and accurate means of predicting the noise levels resulting from engine-quieting technologies at personnel locations is needed. This is complicated by the need to model both the direct and the scattered sound field in order to determine the resultant …


Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti Aug 2016

Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti

Open Access Dissertations

Non-equilibrium microplasmas at atmospheric pressures have been investigated for active flow control, micropropulsion and electronic display applications to name a few. The operational voltages for these microplasmas are on the order of kilovolts. When the electric field at the electrodes reaches GV/m or tens of GV/m either due to reduced interelectrode spacing and surface irregularities or due to carefully designed nanostructures on the electrodes, quantum processes such as field emission and field ionization come into effect. These can potentially reduce the operational voltages of microplasma devices by an order of magnitude. Due to the rarefied and non-equilibrium nature of these …


Preliminary Design Tools In Turbomachinery: Non-Uniformly Spaced Blade Rows, Multistage Interaction, Unsteady Radial Waves, And Propeller Horizontal-Axis Turbine Optimization, Yujun Leng Apr 2016

Preliminary Design Tools In Turbomachinery: Non-Uniformly Spaced Blade Rows, Multistage Interaction, Unsteady Radial Waves, And Propeller Horizontal-Axis Turbine Optimization, Yujun Leng

Open Access Dissertations

Turbomachinery flow fields are inherently unsteady and complex which makes the related CFD analyses computationally intensive. Physically based preliminary design tools are desirable for parametric studies early in the design stage, and to provide deep physical insight and a good starting point for the later CFD analyses. Four analytical/semi-analytical models are developed in this study: 1) a generalized flat plate cascade model for investigating the unsteady aerodynamics of a blade row with non-uniformly spaced blades; 2) a multistage interaction model for investigating rotor-stator interactions; 3) an analytical solution for quantifying the impeller wake convection and pressure wave propagating between a …


Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng Oct 2013

Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng

Open Access Dissertations

By quantitating the amplitude of the unbounded stress, the continuum fracture mechanics defines the stress intensity factor K to characterize the stress and displacement fields in the vicinity of the crack tip, thereby developing the relation between the stress singularity and surface energy (energy release rate G). This G-K relation, assigning physical meaning to the stress intensity factor, makes these two fracture parameters widely used in predicting the onset of crack propagation. However, due to the discrete nature of the atomistic structures without stress singularity, there might be discrepancy between the failure prediction and the reality of nanostructured materials. Defining …