Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 69

Full-Text Articles in Engineering

The Role Of Microstructure On The Combustion And Impact Behavior Of Mechanically Activated Nickel/Aluminum Reactive Composites, Benjamin Aaron Mason Oct 2014

The Role Of Microstructure On The Combustion And Impact Behavior Of Mechanically Activated Nickel/Aluminum Reactive Composites, Benjamin Aaron Mason

Open Access Dissertations

Metal-based reactive composites are a class of materials that consist of at least one metals, such as Ni/Al, that have high-energy densities and can produce significant energy output during exothermic reaction after thermal or mechanical initiation. However, conventionally these materials typically have slow reaction rates and are difficult to ignite at typical micron particle size ranges limiting their application. Therefore, mechanical activation techniques have been used to create materials with high surface areas and smaller characteristic dimensions in order to increase combustion velocity and ignition sensitivity. Their combustion and mechanical impact behavior is being studied to develop the understanding needed …


Cnt-Reinforced Polymer Nanocomposite By Molecular Dynamics Simulations, Yaeji Kim Oct 2014

Cnt-Reinforced Polymer Nanocomposite By Molecular Dynamics Simulations, Yaeji Kim

Open Access Dissertations

Polymer matrix composites reinforced with carbon nanotubes (CNTs) have received significant attention due to their potential for exceptional mechanical, electrical, thermal and optical properties. The enhancement of ultimate mechanical properties of CNT reinforced polymer composites is governed not just by the properties of the two phases but by dispersion of the CNTs, interactions in the interfacial region and local molecular changes in polymer due to the vicinity of the CNTs. Strong adhesive interactions between the matrix and CNT leads to good compatibility preventing the aggregation of the reinforcements and results in optimal mechanical response. Even though significant efforts have been …


Control Of Morphology Al-Fe-Si Phase In Al-Si-Cu Hypoeutectic Alloy, Meng Wang Oct 2014

Control Of Morphology Al-Fe-Si Phase In Al-Si-Cu Hypoeutectic Alloy, Meng Wang

Open Access Dissertations

Aluminum-Silicon (Al-Si) alloys are one of the most versatile aluminum alloys. Iron is considered one of the most harmful elements in Al-Si diecasting alloy because its presence leads to the precipitation of many AlFeSi intermetallic phases and unacceptable mechanical properties, such as reduction in ductility. Thus controlling the fraction and morphology of AlFeSi phase, especially the β-AlFeSi phase is an important way to improve the ductility of Al-Si die casting alloys. ^ In this dissertation, thermodynamics calculation of AlFeSi phase formation and fraction change during solidification process were conducted using Thermo-Calc software. A series of experiments, including adjusting cooling rates, …


Technology, Science, And Environtmental Impact Of A Novel Cu-Ag Core-Shell Solderless Interconnect System, Milea Joy Kammer Jul 2014

Technology, Science, And Environtmental Impact Of A Novel Cu-Ag Core-Shell Solderless Interconnect System, Milea Joy Kammer

Open Access Dissertations

Tin-based solder is ubiquitous in microelectronics manufacturing and plays a critical role in electronic packaging and attachment. While manufacturers of consumer electronics have made the transition to the use of lead-free solder, there are still a variety of reliability issues associated with these lead-free alternatives, particularly for high performance, high reliability applications. Because of these performance short-comings, researchers are still searching for a material, an alloy, or a unique alternative that can meet the thermal, mechanical, and electrical requirements for conventional reflow solder applications. In an effort to produce a more reliable alternative, Kim et al. proposed the low-temperature (200°C) …


Atomic Level Study Of Water-Gas Shift Catalysts Via Transmission Electron Microscopy And X-Ray Spectroscopy, Mehmed Cem Akatay Oct 2013

Atomic Level Study Of Water-Gas Shift Catalysts Via Transmission Electron Microscopy And X-Ray Spectroscopy, Mehmed Cem Akatay

Open Access Dissertations

Water-gas shift (WGS), CO + H2 O [Special characters omitted.] CO2 + H2 (ΔH° = -41 kJ mol -1 ), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2 O3 catalystsare employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism.

In this study, the structure of the supported …


Spectroscopic And Kinetic Characterization Of Catalytic Materials For The Conversion Of Biomass-Derived Compounds, Paul James Dietrich Oct 2013

Spectroscopic And Kinetic Characterization Of Catalytic Materials For The Conversion Of Biomass-Derived Compounds, Paul James Dietrich

Open Access Dissertations

As economies look to transition away from petroleum for social, economic, and political reasons, biomass will continue to attract attention as a renewable feedstock for the fuels and chemicals industry. In order to turn biomass into end use fuels and chemicals, the oxygen content must be lowered significantly, requiring large hydrogen inputs. For these processes to be completely renewable, the hydrogen must come from biomass or biomass-derived compounds. In this work, catalysts for the aqueous phase reforming (APR) of biomass-derived sugars were characterized by a combination of reaction kinetics, X-ray spectroscopy, electron microscopy, and theoretical computation to determine the active …


Solution To Certain Problems In The Failure Of Composite Structures, Jonathan Goodsell Oct 2013

Solution To Certain Problems In The Failure Of Composite Structures, Jonathan Goodsell

Open Access Dissertations

The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is …


Multiscale Modeling Of The Hierarchical Structure Of Cellulose Nanocrystals, Fernando Luis Dri Oct 2013

Multiscale Modeling Of The Hierarchical Structure Of Cellulose Nanocrystals, Fernando Luis Dri

Open Access Dissertations

Cellulose constitutes the most abundant renewable polymeric resource available today. It considered an almost inexhaustible source of raw material, and holds great promise in meeting increasing demands for environmentally friendly and biocompatible products. Key future applications are currently under development for the automotive, aerospace and textile industries. When cellulose fibers are subjected to acid hydrolysis, the fibers yield rod-like, highly crystalline residues called cellulose nanocrystals (CNCs). These particles show remarkable mechanical and chemical properties (e.g. Young Modulus ~200 GPa) within the range of other synthetically-developed reinforcement materials. Critical to the design of these materials are fundamental material properties, many of …


Response Of Plasma Facing Components In Tokamaks Due To Intense Energy Deposition Using Particle-In-Cell(Pic) Methods, Filippo Genco Oct 2013

Response Of Plasma Facing Components In Tokamaks Due To Intense Energy Deposition Using Particle-In-Cell(Pic) Methods, Filippo Genco

Open Access Dissertations

Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m2 applied in very short periods (0.1 to 5 ms) can be …


Modeling The Atomic And Electronic Structure Of Metal-Metal, Metal-Semiconductor And Semiconductor-Oxide Interfaces, Ganesh Krishna Hegde Oct 2013

Modeling The Atomic And Electronic Structure Of Metal-Metal, Metal-Semiconductor And Semiconductor-Oxide Interfaces, Ganesh Krishna Hegde

Open Access Dissertations

The continuous downward scaling of electronic devices has renewed attention on the importance of the role of material interfaces in the functioning of key components in electronic technology in recent times. It has also brought into focus the utility of

atomistic modeling in providing insights from a materials design perspective. In this thesis, a combination of Semi Empirical Tight-Binding (TB), first-principles Density

Functional Theory and Reactive Molecular Dynamics (MD) modeling is used to study aspects of the electronic and atomic structure of three such 'canonical' material interfaces - Metal-Metal, Metal-Semiconductor and Semiconductor oxide interfaces.

An important contribution of this thesis …


The Effect Of Composition On The Linear And Nonlinear Mechanical Properties Of Particulate Filled Elastomers, Oluwaseyi Ogebule Oct 2013

The Effect Of Composition On The Linear And Nonlinear Mechanical Properties Of Particulate Filled Elastomers, Oluwaseyi Ogebule

Open Access Dissertations

Engineering elastomers are materials capable of undergoing large deformation upon load application and recovering upon load removal. From car tires to building vibration isolator systems, elastomers are the most versatile of engineering materials. The inclusion of particulate fillers into elastomers enhances their mechanical properties (modulus, tensile strength, toughness, tear resistance, etc) thereby extending their applicability to more demanding functions. The automotive, healthcare, construction, adhesives and consumer products are some of the many industries that produce finished goods containing elastomeric parts.

Despite the various concepts on reinforcement in filled elastomers, a complete understanding of their linear viscoelastic properties and the nonlinear …


Mechanisms Of Microstructure Formation Under The Influence Of Ultrasonic Vibrations, Milan Rakita Oct 2013

Mechanisms Of Microstructure Formation Under The Influence Of Ultrasonic Vibrations, Milan Rakita

Open Access Dissertations

Positive effects of ultrasound on crystallization have been known for almost 90 years. Application of ultrasound has been very successful in many industries, most notably in chemistry, creating a new branch of science - sonochemistry. However, ultrasonication has not found wide commercial application in the solidification processing. The reason for that is the complexity of underlying phenomena and the lack of predicting models which correlate processing parameters with the properties of a product. The purpose of this study is to give some contribution toward better understanding of mechanisms that lead to changes in the solidifying microstructure. It has been found …


Dynamic Behavior Of Sandwich Beams With Internal Resonators, Bhisham Nar Narain Sharma Oct 2013

Dynamic Behavior Of Sandwich Beams With Internal Resonators, Bhisham Nar Narain Sharma

Open Access Dissertations

Dynamic behavior of sandwich beams with internal resonators was investigated. The effect of inserting spring-mass resonators into the sandwich core was theoretically analyzed and it was shown that a wave attenuation bandgap exists due to local resonance. Steady state experiments were used to demonstrate such an attenuation bandgap. Frequency response functions were obtained for a beam with resonators and without resonators. It was shown that insertion of resonators into the core causes a wave attenuation bandgap to open up. The experimental results were verified using finite element simulations. Further experiments were carried out by tuning the resonators at 12 Hz …


The Comparison Of Composite Aircraft Field Repair Method (Cafrm) With Traditional Aircraft Repair Technologies, Peng Hao Wang Oct 2013

The Comparison Of Composite Aircraft Field Repair Method (Cafrm) With Traditional Aircraft Repair Technologies, Peng Hao Wang

Open Access Dissertations

In the aviation industry, manufacturers made the transition from aluminum to composite materials for the majority of their primary structures over the last few decades. While the design and manufacturing techniques have consistently evolved, field repair methods were consistently overlooked. In this study, specimens fabricated using some of the common repair methods such as the autoclave repair method, and Double Vacuum Debulk (DVD) repair method were tested against the Composite Aircraft Field Repair Method (CAFRM) proposed by the researcher. Specimens were tested with microscopy, acid digestion, short beam shear, and mode I fracture tests. The researcher was able to determine …


Synthesis Of Graphene Nanomaterials And Their Application In Electrochemical Energy Storage, Guoping Xiong Oct 2013

Synthesis Of Graphene Nanomaterials And Their Application In Electrochemical Energy Storage, Guoping Xiong

Open Access Dissertations

The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density …


Utilizing Electron Microscopy And Spectroscopy Methods To Understand Water Structure And Water Doping, Lior Miller Oct 2013

Utilizing Electron Microscopy And Spectroscopy Methods To Understand Water Structure And Water Doping, Lior Miller

Open Access Dissertations

Water is the second most common element in the universe and the most studied material on earth. Most of the studies concerning water are from the fields of chemistry and biology. Hence, the structure of water molecules and short range order and interactions are well characterized and understood. However, the collective arrangement of water molecules and the long range order are still missing. Understanding of this long range order in water is needed, as it is the key to many water activities.

To fill this gap, this study utilizes a new direct method for characterization of water in the vapor …


Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng Oct 2013

Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng

Open Access Dissertations

By quantitating the amplitude of the unbounded stress, the continuum fracture mechanics defines the stress intensity factor K to characterize the stress and displacement fields in the vicinity of the crack tip, thereby developing the relation between the stress singularity and surface energy (energy release rate G). This G-K relation, assigning physical meaning to the stress intensity factor, makes these two fracture parameters widely used in predicting the onset of crack propagation. However, due to the discrete nature of the atomistic structures without stress singularity, there might be discrepancy between the failure prediction and the reality of nanostructured materials. Defining …


Impact Resistant Glassy Polymers: Pre-Stress And Mode Ii Fracture, Jared Steven Archer Feb 2013

Impact Resistant Glassy Polymers: Pre-Stress And Mode Ii Fracture, Jared Steven Archer

Open Access Dissertations

Model glassy polymers, polymethyl methacrylate (PMMA) and polycarbonate (PC) are used to experimentally probe several aspects of polymer fracture. In Chapter 1, the method of pre-stress is employed as a means of improving the fracture properites of brittle PMMA. Samples are tested under equi-biaxial compression, simple shear and a combination of biaxial compression and shear. Equi-biaxial compression is shown to increase the threshold stress level for projectile penetration whereas shear pre-stress has a large effect on the overall energy absorbed during an impact. There is also an apparent interaction observed between compression and shear to dramatically increase the threshold stress. …


Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri Feb 2013

Characterization Of Self-Assembled Functional Polymeric Nanostructures: I. Magnetic Nanostructures From Metallopolymers Ii. Zwitterionic Polymer Vesicles In Ionic Liquid, Raghavendra Raj Maddikeri

Open Access Dissertations

Two diverse projects illustrate the application of various materials characterization techniques to investigate the structure and properties of nanostructured functional materials formed in both bulk as well as in solutions. In the first project, ordered magnetic nanostructures were formed within polymer matrix by novel metallopolymers. The novel metal-functionalized block copolymers (BCPs) enabled the confinement of cobalt metal ions within nanostructured BCP domains, which upon simple heat treatment resulted in room temperature ferromagnetic (RTFM) materials. On the contrary, cobalt functionalized homopolymer having similar chemical structure and higher loading of metal-ion are unstructured and exhibited superparamagnetic (SPM) behavior at room temperature. Based …


Helical Ordering In Chiral Block Copolymers, Wei Zhao Feb 2013

Helical Ordering In Chiral Block Copolymers, Wei Zhao

Open Access Dissertations

The phase behavior of chiral block copolymers (BCPs*), namely, BCPs with at least one of the constituent block is formed by chiral monomers, is studied both experimentally and theoretically. Specifically, the formation of a unique morphology with helical sense, the H* phase, where the chiral block forms nanohelices hexagonally embedded in the matrix of achiral block, is investigated. Such unique morphology was first observed in the cast film of polystyrene-b-poly(L-lactide) (PS-b-PLLA) from a neutral solvent dichloromethane at room temperature with all the nanohelices being left-handed, which would switch to right-handed if the PLLA block changes to …


Dynamics And Kinetics Of Model Biological Systems, Stephen William Mirigian Sep 2012

Dynamics And Kinetics Of Model Biological Systems, Stephen William Mirigian

Open Access Dissertations

In this work we study three systems of biological interest: the translocation of a heterogeneously charged polymer through an infinitely thin pore, the wrapped of a rigid particle by a soft vesicle and the modification of the dynamical properties of a gel due to the presence of rigid inclusions.

We study the kinetics of translocation for a heterogeneously charged polyelectrolyte through an infinitely narrow pore using the Fokker-Planck formalism to compute mean first passage times, the probability of successful translocation, and the mean successful translocation time for a diblock copolymer. We find, in contrast to the homopolymer result, that details …


Tuning The Properties Of Metal-Ligand Complexes To Modify The Properties Of Supramolecular Materials, Ian Henderson May 2012

Tuning The Properties Of Metal-Ligand Complexes To Modify The Properties Of Supramolecular Materials, Ian Henderson

Open Access Dissertations

Supramolecular chemistry is the study of discreet molecules assembled into more complex structures though non-covalent interactions such as host-guest effects, pi-pi stacking, electrostatic effects, hydrogen bonding, and metal-ligand interactions. Using these interactions, complex hierarchical assembles can be created from relatively simple precursors.

Of the supramolecular interactions listed above, metal-ligand interactions are of particular interest due to the wide possible properties which they present. Factors such as the denticity, polarizability, steric hindrance, ligand structure, and the metal used (among others) contribute to a dramatic range in the physical properties of the metal-ligand complexes. Particularly affected by these factors are the kinetic …


Surface Instabilities For Adhesion Control, Chelsea Simone Davis May 2012

Surface Instabilities For Adhesion Control, Chelsea Simone Davis

Open Access Dissertations

Controlling the specific adhesive properties of surfaces is a technologically complex challenge that has piqued the interest of many research groups around the world. While many scientists have used complex topographic and chemically altered surfaces to tune adhesion, others have shown that naturally occurring phenomena, such as elastic instabilities, can impact adhesion. We provide a thorough investigation into the effects of periodic surface buckling instabilities, or wrinkles, on adhesion. Wrinkles are an attractive surface patterning alternative as they form spontaneously over large areas and their dimensions, namely wavelength and amplitude, can be controlled on length scales relevant for adhesion control. …


Controlling Morphology In Swelling-Induced Wrinkled Surfaces, Derek Breid Feb 2012

Controlling Morphology In Swelling-Induced Wrinkled Surfaces, Derek Breid

Open Access Dissertations

Wrinkles represent a pathway towards the spontaneous generation of ordered surface microstructure for applications in numerous fields. Examples of highly complex ordered wrinkle structures abound in Nature, but the ability to harness this potential for advanced material applications remains limited. This work focuses on understanding the relationship between the patterns on a wrinkled surface and the experimental conditions under which they form. Because wrinkles form in response to applied stresses, particular attention is given to the nature of the stresses in a wrinkling surface. The fundamental insight gained was then utilized to account for observed wrinkle formation phenomena within more …


Phase Behavior Of Block Copolymers In Compressed Co2 And As Single Domain-Layer, Nanolithographic Etch Resists For Sub-10 Nm Pattern Transfer, Curran Matthew Chandler Sep 2011

Phase Behavior Of Block Copolymers In Compressed Co2 And As Single Domain-Layer, Nanolithographic Etch Resists For Sub-10 Nm Pattern Transfer, Curran Matthew Chandler

Open Access Dissertations

Diblock copolymers have many interesting properties, which first and foremost include their ability to self-assemble into various ordered, regularly spaced domains with nanometer-scale feature sizes. The work in this dissertation can be logically divided into two parts - the first and the majority of this work describes the phase behavior of certain block copolymer systems, and the second discusses real applications possible with block copolymer templates. Many compressible fluids have solvent-like properties dependent on fluid pressure and can be used as processing aids similar to liquid solvents. Here, compressed CO2 was shown to swell several thin homopolymer films, including …


Electrostatic Effects In Aggregation Of Crystallin Proteins, Deniz Elizabeth Civay Sep 2011

Electrostatic Effects In Aggregation Of Crystallin Proteins, Deniz Elizabeth Civay

Open Access Dissertations

The three projects utilized polymer physics theories to investigate polymer aggregation mechanics. Dynamic light scattering (DLS), static light scattering (SLS) and small angle light scattering (SALS) were the primary characterization tools. The goal of the first project was to study the aggregation of bovine βL-crystallin and apply that knowledge towards cataract formation, which is caused by aggregation of the crystallins. The first series of experiments characterized the kinetics of α-crystallin and βL-crystallin in water at room temperature. α-crystallin’s equilibrium hydrodynamic radius value was kinetically independent. βL-crystallin formed an aggregate with an Rh that was kinetically dependent. The packing structure of …


Aspects Of Network Formation And Property Evolution In Glassy Polymer Networks, Andrew Thomas Detwiler Sep 2011

Aspects Of Network Formation And Property Evolution In Glassy Polymer Networks, Andrew Thomas Detwiler

Open Access Dissertations

Experimental and theoretical characterization techniques are developed to illuminate relationships between molecular architecture, processing strategies, and physical properties of several model epoxy-amine systems. Just beyond the gel point partially cured networks are internally antiplasticized by unreacted epoxy and amine which leads to enhanced local chain packing and strain localization during deformation processes. Additional curing causes the antiplasticization to be removed, resulting in lower modulus, density, yield stress, and less strain localization. Physical and mechanical probes of network formation are discussed with respect to several different partially cured model epoxy-amine chemistries. The non-linear fracture energy release rate and the molecular architecture …


Organic Photovoltaics Based On P3ht/Pcbm: Correlating Efficiency And Morphology, Dian Chen Sep 2011

Organic Photovoltaics Based On P3ht/Pcbm: Correlating Efficiency And Morphology, Dian Chen

Open Access Dissertations

Controlling the morphology of thin films is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. The morphology and interfacial behavior of the multicomponent active layers confined between electrodes are strongly influenced by the preparation conditions. Results obtained in this work quantitatively show the photovoltaic device performance is strongly affected by the nanoscopic morphology, crystal orientation, composition distribution and the interdiffusion behavior of the photoactive layer. To better understand the physics of the photoactive layer in the organic photovoltaic devices, it is necessary to gain a quantitative understanding of the morphology and the manner in which it develops. A …


Effects Of Molecular Architecture On Crystallization Behavior Of Pol(Lactic Acid) And Ethylene-Vinyl Acetate, Jeffrey Paul Kalish Sep 2011

Effects Of Molecular Architecture On Crystallization Behavior Of Pol(Lactic Acid) And Ethylene-Vinyl Acetate, Jeffrey Paul Kalish

Open Access Dissertations

The relationship between polymer chain architecture, crystallization behavior, and morphology formation was investigated. The structures formed are highly dependent on chain configuration and crystallization kinetics. Poly(lactic acid) (PLA) and Poly(ethylene-co-vinyl acetate) (EVA) random copolymers were studied. Sample characterization was performed using a variety of techniques, including spectroscopy, scattering, and calorimetry. In PLA, structural differences between α’ and α crystalline phases were analyzed using cryogenic infrared and Raman spectroscopy. Compared to the  crystal, the ’ crystal has slightly looser packing and weaker intermolecular interactions involving carbonyl and methyl functional groups. Simulations in conjunction with Raman scattering analyzed the …


Ion Mobility Studies Of Functional Polymeric Materials For Fuel Cells And Lithium Ion Batteries, Shilpi Sanghi Sep 2011

Ion Mobility Studies Of Functional Polymeric Materials For Fuel Cells And Lithium Ion Batteries, Shilpi Sanghi

Open Access Dissertations

The research presented in this thesis focuses on developing new functional polymeric materials that can conduct ions, H+, or OH- or Li+. The motivation behind this work was to understand the similarities and/or differences in the structure property relationships between polymer membranes and the conductivity of H+ and OH- ions, and between polymer membranes and the anhydrous conductivity of H+ and Li+ ions. This understanding is critical to developing durable polymer membranes with high H+, OH- and Li+ ion conductivity for proton exchange membrane fuel cells (PEMFCs), …