Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Engineering

Correlative Imaging Of Three-Dimensional Cell Culture On Opaque Bioscaffolds For Tissue Engineering Applications, Mone’T Sawyer, Josh Eixenberger, Olivia Nielson, Jacob Manzi, Cadré Francis, Raquel Montenegro-Brown, Harish Subbaraman, David Estrada Sep 2023

Correlative Imaging Of Three-Dimensional Cell Culture On Opaque Bioscaffolds For Tissue Engineering Applications, Mone’T Sawyer, Josh Eixenberger, Olivia Nielson, Jacob Manzi, Cadré Francis, Raquel Montenegro-Brown, Harish Subbaraman, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues, such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular microenvironment of the target tissue. Visualization and analysis of potential 3D porous scaffolds as well as the associated cell growth and proliferation characteristics present additional problems. This is particularly challenging for opaque scaffolds using standard optical imaging techniques. Here, we use graphene foam (GF) as a 3D porous biocompatible substrate, which is scalable, reproducible, …


Synergic Antitumor Effect Of Photodynamic Therapy And Chemotherapy Mediated By Nano Drug Delivery Systems, Mozhgan Aghajanzadeh, Mostafa Zamani, Fereshteh Rajabi Kouchi, Josh Eixenberger, Dorsa Shirini, David Estrada, Farhad Shirini Feb 2022

Synergic Antitumor Effect Of Photodynamic Therapy And Chemotherapy Mediated By Nano Drug Delivery Systems, Mozhgan Aghajanzadeh, Mostafa Zamani, Fereshteh Rajabi Kouchi, Josh Eixenberger, Dorsa Shirini, David Estrada, Farhad Shirini

Materials Science and Engineering Faculty Publications and Presentations

This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal–organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various …


First-Principles Studies Of Mof Absorption On Hydroxylated And Non-Hydroxylated Metal Oxide Surfaces And Implications For Atomic Layer Deposition Of Mos2, Matthew Lawson, Elton Graugnard, Lan Li Mar 2021

First-Principles Studies Of Mof Absorption On Hydroxylated And Non-Hydroxylated Metal Oxide Surfaces And Implications For Atomic Layer Deposition Of Mos2, Matthew Lawson, Elton Graugnard, Lan Li

Materials Science and Engineering Faculty Publications and Presentations

Significant interest in two-dimensional transition metal dichalcogenides has led to numerous experimental studies of their synthesis using scalable vapor phase methods, such as chemical vapor deposition (CVD) and atomic layer deposition (ALD). ALD typically allows lower deposition temperatures, and nucleation of chemical precursors requires reactions with surface functional groups. A common first-principles method used to study ALD modeling is the calculation of activation energy for a proposed reaction pathway. In this work we calculated the partial charge densities, local density of states (LDoS), Bader charge analysis, adsorption energies, and charge density difference using density functional theory (DFT) to investigate the …


High-Performance Flexible Bismuth Telluride Thin Film From Solution Processed Colloidal Nanoplates, Madhusudan Kongara, Tony Varghese, Karthik Chinnathambi, Jesse Schimpf, Josh Eixenberger, Paul H. Davis, Yaqiao Wu, David Estrada Nov 2020

High-Performance Flexible Bismuth Telluride Thin Film From Solution Processed Colloidal Nanoplates, Madhusudan Kongara, Tony Varghese, Karthik Chinnathambi, Jesse Schimpf, Josh Eixenberger, Paul H. Davis, Yaqiao Wu, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Thermoelectric generators are an environmentally friendly and reliable solid‐state energy conversion technology. Flexible and low‐cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride (Bi2Te3) based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report, Bi2Te3 thin films are deposited on a flexible polyimide substrate using low‐cost and scalable manufacturing methods. The synthesized Bi2Te3 nanocrystals have a thickness of 35 ± …


Mechanochemical Conversion Kinetics Of Red To Black Phosphorus And Scaling Parameters For High Volume Synthesis, Samuel V. Pedersen, Florent Muramutsa, Joshua D. Wood, Chad Husko, David Estrada, Brian J. Jaques Oct 2020

Mechanochemical Conversion Kinetics Of Red To Black Phosphorus And Scaling Parameters For High Volume Synthesis, Samuel V. Pedersen, Florent Muramutsa, Joshua D. Wood, Chad Husko, David Estrada, Brian J. Jaques

Materials Science and Engineering Faculty Publications and Presentations

Adopting black phosphorus (BP) as a material in electronic and optoelectronic device manufacturing requires the development and understanding of a large-scale synthesis technique. To that end, high-energy planetary ball milling is demonstrated as a scalable synthesis route, and the mechanisms and conversion kinetics of the BP phase transformation are investigated. During the milling process, media collisions rapidly compress amorphous red phosphorus (RP) into crystalline, orthorhombic BP flakes, resulting in a conversion yield of ≈90% for ≈5 g of bulk BP powder. Milling conversion kinetics, monitored via ex situ x-ray diffraction, manifest a sigmoidal behavior best described by the Avrami rate …


A Review Of Inkjet Printed Graphene And Carbon Nanotubes Based Gas Sensors, Twinkle Pandhi, Ashita Chandnani, Harish Subbaraman, David Estrada Oct 2020

A Review Of Inkjet Printed Graphene And Carbon Nanotubes Based Gas Sensors, Twinkle Pandhi, Ashita Chandnani, Harish Subbaraman, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Graphene and carbon nanotube (CNT)-based gas/vapor sensors have gained much traction for numerous applications over the last decade due to their excellent sensing performance at ambient conditions. Inkjet printing various forms of graphene (reduced graphene oxide or modified graphene) and CNT (single-wall nanotubes (SWNTs) or multiwall nanotubes (MWNTs)) nanomaterials allows fabrication onto flexible substrates which enable gas sensing applications in flexible electronics. This review focuses on their recent developments and provides an overview of the state-of-the-art in inkjet printing of graphene and CNT based sensors targeting gases, such as NO2, Cl2, CO2, NH3 …


A Parametric Study For In-Pile Use Of The Thermal Conductivity Needle Probe Using A Transient, Multilayered Analytical Model, Courtney Hollar, Austin Fleming, Kurt Davis, Ralph Budwig, Colby Jensen, David Estrada Nov 2019

A Parametric Study For In-Pile Use Of The Thermal Conductivity Needle Probe Using A Transient, Multilayered Analytical Model, Courtney Hollar, Austin Fleming, Kurt Davis, Ralph Budwig, Colby Jensen, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

By utilizing an in-pile measurement, thermal conductivity can be determined under prototypic conditions over a range of burnup. In this work we develop a multilayer quadrupoles analytical model to describe the transient thermal interactions between a line heat source (i.e. needle probe) and cylindrical nuclear fuel geometry for inpile thermal conductivity measurements. A finite element analysis of the detailed needle probe geometry was compared to results from the analytical model to verify the assumptions made in the analytical model. Experimentally, the needle probe was used to measure the thermal properties of polytetrafluoroethylene (PTFE) and stainless steel 304 with three different …


Thermal Transport In Layer-By-Layer Assembled Polycrystalline Graphene Films, David Estrada, Alondra Perez Mar 2019

Thermal Transport In Layer-By-Layer Assembled Polycrystalline Graphene Films, David Estrada, Alondra Perez

Materials Science and Engineering Faculty Publications and Presentations

New technologies are emerging which allow us to manipulate and assemble 2-dimensional (2D) building blocks, such as graphene, into synthetic van der Waals (vdW) solids. Assembly of such vdW solids has enabled novel electronic devices and could lead to control over anisotropic thermal properties through tuning of inter-layer coupling and phonon scattering. Here we report the systematic control of heat flow in graphene-based vdW solids assembled in a layer-by-layer (LBL) fashion. In-plane thermal measurements (between 100 K and 400 K) reveal substrate and grain boundary scattering limit thermal transport in vdW solids composed of one to four transferred layers of …


Corrosion Initiation And Propagation On Carburized Martensitic Stainless Steel Surfaces Studied Via Advanced Scanning Probe Microscopy, Armen Kvryan, Corey M. Efaw, Kari A. Higginbotham, Olivia O. Maryon, Paul H. Davis, Elton Graugnard, Michael F. Hurley Mar 2019

Corrosion Initiation And Propagation On Carburized Martensitic Stainless Steel Surfaces Studied Via Advanced Scanning Probe Microscopy, Armen Kvryan, Corey M. Efaw, Kari A. Higginbotham, Olivia O. Maryon, Paul H. Davis, Elton Graugnard, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

Historically, high carbon steels have been used in mechanical applications because their high surface hardness contributes to excellent wear performance. However, in aggressive environments, current bearing steels exhibit insufficient corrosion resistance. Martensitic stainless steels are attractive for bearing applications due to their high corrosion resistance and ability to be surface hardened via carburizing heat treatments. Here three different carburizing heat treatments were applied to UNS S42670: a high-temperature temper (HTT), a low-temperature temper (LTT), and carbo-nitriding (CN). Magnetic force microscopy showed differences in magnetic domains between the matrix and carbides, while scanning Kelvin probe force microscopy (SKPFM) revealed a 90–200 …


Open-Source Automated Chemical Vapor Deposition System For The Production Of Two-Dimensional Nanomaterials, Lizandra Williams-Godwin, Dale Brown, Richard Livingston, Tyler Webb, Lynn Karriem, Elton Graugnard, David Estrada Jan 2019

Open-Source Automated Chemical Vapor Deposition System For The Production Of Two-Dimensional Nanomaterials, Lizandra Williams-Godwin, Dale Brown, Richard Livingston, Tyler Webb, Lynn Karriem, Elton Graugnard, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

The study of two- dimensional (2D) materials is a rapidly growing area within nanomaterials research. However, the high equipment costs, which include the processing systems necessary for creating these materials, can be a barrier to entry for some researchers interested in studying these novel materials. Such process systems include those used for chemical vapor deposition, a preferred method for making these materials. To address this challenge, this article presents the first open-source design for an automated chemical vapor deposition system that can be built for less than a third of the cost for a comparable commercial system. The materials and …


Toward Improving Ambient Volta Potential Measurements With Skpfm For Corrosion Studies, Corey M. Efaw, Thiago Da Silva, Paul H. Davis, Lan Li, Elton Graugnard, Michael F. Hurley Jan 2019

Toward Improving Ambient Volta Potential Measurements With Skpfm For Corrosion Studies, Corey M. Efaw, Thiago Da Silva, Paul H. Davis, Lan Li, Elton Graugnard, Michael F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

Scanning Kelvin probe force microscopy (SKPFM) is used in corrosion studies to quantify the relative nobility of different microstructural features present within complex metallic systems and thereby elucidate possible corrosion initiation sites. However, Volta potential differences (VPDs) measured via SKPFM in the literature for metal alloys exhibit large variability, making interpretation and application for corrosion studies difficult. We have developed an improved method for referencing SKPFM VPDs by quantifying the closely related work function of the probe relative to an inert gold standard whose modified work function is calculated via density functional theory (DFT). By measuring and tracking changes in …


Boron-Implanted Silicon Substrates For Physical Adsorption Of Dna Origami, Sadao Takabayashi, Shohei Kotani, Juan Flores-Estrada, Elijah Spears, Jennifer E. Padilla, Lizandra C. Godwin, Elton Graugnard, Wan Kuang, William L. Hughes Sep 2018

Boron-Implanted Silicon Substrates For Physical Adsorption Of Dna Origami, Sadao Takabayashi, Shohei Kotani, Juan Flores-Estrada, Elijah Spears, Jennifer E. Padilla, Lizandra C. Godwin, Elton Graugnard, Wan Kuang, William L. Hughes

Materials Science and Engineering Faculty Publications and Presentations

DNA nanostructures routinely self-assemble with sub-10 nm feature sizes. This capability has created industry interest in using DNA as a lithographic mask, yet with few exceptions, solution-based deposition of DNA nanostructures has remained primarily academic to date. En route to controlled adsorption of DNA patterns onto manufactured substrates, deposition and placement of DNA origami has been demonstrated on chemically functionalized silicon substrates. While compelling, chemical functionalization adds fabrication complexity that limits mask efficiency and hence industry adoption. As an alternative, we developed an ion implantation process that tailors the surface potential of silicon substrates to facilitate adsorption of DNA nanostructures …


De-Risking Transdisciplinary Research By Creating Shared Values, Donna C. Llewellyn, William L. Hughes Jun 2018

De-Risking Transdisciplinary Research By Creating Shared Values, Donna C. Llewellyn, William L. Hughes

Materials Science and Engineering Faculty Publications and Presentations

This Lessons Learned Paper describes a yearlong faculty development pilot program that was designed to help a team of faculty de-risk their pursuit of wicked research problems. Wicked problems are extraordinarily difficult to solve due to their incomplete, contradictory, and at times changing requirements. They often include multiple stakeholders with competing interests and worldviews. As a result, they are risky by definition because they are difficult to fund, publish, and collaborate on. Presented here, a team of eleven faculty, from six different academic units, explored their personal and professional values during an initial off-site two and a half day retreat. …


Improving The Relative Calculations Of Volta Potential Differences Acquired From Scanning Kelvin Probe Force Microscopy (Skpfm) From Comparing An Inert Material To First-Principle Calculations, C. M. Efaw, T. Da Silva, P. H. Davis, L. Li, E. Graugnard, M. Hurley Jan 2018

Improving The Relative Calculations Of Volta Potential Differences Acquired From Scanning Kelvin Probe Force Microscopy (Skpfm) From Comparing An Inert Material To First-Principle Calculations, C. M. Efaw, T. Da Silva, P. H. Davis, L. Li, E. Graugnard, M. Hurley

Materials Science and Engineering Faculty Publications and Presentations

An improved relative scaling of Volta potential differences (VPD) acquired from scanning Kelvin probe force microscopy (SKPFM) was developed by quantifying the probe work function. In corrosion studies, SKPFM has been used to identify local nobility of complex metallic systems and provide theoretical corrosion initiation sites. However, large variability in measured VPD values for metallic phases has led to controversy in their interpretation. Tracking changes of the probe work function has been shown to decrease the variability seen in SKPFM results. To quantify the work function of SKPFM probes, the measured VPD of an inert gold standard was compared to …


Detection Of Methylation On Dsdna Using Nanopores In Mos2 Membrane, David Estrada Oct 2017

Detection Of Methylation On Dsdna Using Nanopores In Mos2 Membrane, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Methylation at the 5-carbon position of the cytosine nucleotide base in DNA has been shown to be a reliable diagnostic biomarker for carcinogenesis. Early detection of methylation and intervention could drastically increase the effectiveness of therapy and reduce the cancer mortality rate. Current methods for detecting methylation involve bisulfite genomic sequencing, which are cumbersome and demand a large sample size of bodily fluids to yield accurate results. Hence, more efficient and cost effective methods are desired. Based on our previous work, we present a novel nanopore-based assay using a nanopore in a MoS2 membrane, and the methyl-binding protein (MBP), …


Phase Separation In Ti-6al-4v Alloys With Boron Additions For Biomedical Applications: Scanning Kelvin Probe Force Microscopy Investigation Of Microgalvanic Couples And Corrosion Initiation, P. H. Davis, K. Robles, K. Livingston, S. Johns, V. A. Ravi, E. Graugnard, M. F. Hurley Aug 2017

Phase Separation In Ti-6al-4v Alloys With Boron Additions For Biomedical Applications: Scanning Kelvin Probe Force Microscopy Investigation Of Microgalvanic Couples And Corrosion Initiation, P. H. Davis, K. Robles, K. Livingston, S. Johns, V. A. Ravi, E. Graugnard, M. F. Hurley

Materials Science and Engineering Faculty Publications and Presentations

To investigate the effect of boron additions on the corrosion behavior of Ti-6Al-4V for potential use in biomedical implants and devices, cast samples of Ti-6Al-4V were alloyed with 0.01% to 1.09% boron by weight and subjected to hot isostatic pressing. Subsequent analysis via scanning Kelvin probe force microscopy and scanning electron microscopy/energy-dispersive spectroscopy revealed the presence of both alpha (α) and beta (β) phase titanium, enriched in aluminum and vanadium, respectively. At all concentrations, boron additions affected the grain structure and were dispersed throughout both phases, but above the solubility limit, needle-like TiB structures also formed. …


Vertically Integrated Projects (Vip) Programs: Multidisciplinary Projects With Homes In Any Discipline, Jocelyn B. S. Cullers, William L. Hughes, Donna C. Llewellyn Jun 2017

Vertically Integrated Projects (Vip) Programs: Multidisciplinary Projects With Homes In Any Discipline, Jocelyn B. S. Cullers, William L. Hughes, Donna C. Llewellyn

Materials Science and Engineering Faculty Publications and Presentations

A survey of papers in the ASEE Multidisciplinary Engineering Division over the last three years shows three main areas of emphasis: individual courses; profiles of specific projects; and capstone design courses. However, propagating multidisciplinary education across the vast majority of disciplines offered at educational institutions with varying missions requires models that are independent of the disciplines, programs, and institutions in which they were originally conceived. Further, models that can propagate must be cost effective, scalable, and engage and benefit participating faculty. Since 2015, a consortium of twenty-four institutions has come together around one such model, the Vertically Integrated Projects (VIP) …


High-Performance And Flexible Thermoelectric Films By Screen Printing Solution-Processed Nanoplate Crystals, Tony Varghese, Courtney Hollar, Joseph Richardson, Nicholas Kempf, Chao Han, Pasindu Gamarachchi, David Estrada, Yanliang Zhang Sep 2016

High-Performance And Flexible Thermoelectric Films By Screen Printing Solution-Processed Nanoplate Crystals, Tony Varghese, Courtney Hollar, Joseph Richardson, Nicholas Kempf, Chao Han, Pasindu Gamarachchi, David Estrada, Yanliang Zhang

Materials Science and Engineering Faculty Publications and Presentations

Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate …


Determining Hydrodynamic Forces In Bursting Bubbles Using Dna Nanotube Mechanics, Rizal F. Hariadi, Erik Winfree, Bernard Yurke Nov 2015

Determining Hydrodynamic Forces In Bursting Bubbles Using Dna Nanotube Mechanics, Rizal F. Hariadi, Erik Winfree, Bernard Yurke

Materials Science and Engineering Faculty Publications and Presentations

Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean’s environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sources of hydrodynamic shear encountered in the ocean are breaking waves and the bursting bubbles produced by such waves. On a microscopic scale, one expects the surface-tension–driven flows produced during bubble rupture to exhibit particularly high velocity gradients due to the small size scales and masses involved. However, little work has examined the strength of shear flow rates …


Dna-Mediated Excitonic Upconversion Fret Switching, Donald L. Kellis, Sarah M. Rehn, Brittany L. Cannon, Paul H. Davis, Elton Graugnard, Jeunghoon Lee, Bernard Yurke, William B. Knowlton Nov 2015

Dna-Mediated Excitonic Upconversion Fret Switching, Donald L. Kellis, Sarah M. Rehn, Brittany L. Cannon, Paul H. Davis, Elton Graugnard, Jeunghoon Lee, Bernard Yurke, William B. Knowlton

Materials Science and Engineering Faculty Publications and Presentations

Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy upconversion via upconversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based upconversion has been demonstrated, it suffers from low FRET …


Creating A Stem Identity: Investment With Return, Janet Callahan, Patricia Pyke, Susan Shadle, R. Eric Landrum Jun 2014

Creating A Stem Identity: Investment With Return, Janet Callahan, Patricia Pyke, Susan Shadle, R. Eric Landrum

Materials Science and Engineering Faculty Publications and Presentations

Establishing a strong STEM (science, technology, engineering and mathematics) identity at Boise State University, a metropolitan campus with approximately 3,655 undergraduate STEM students and a total undergraduate enrollment of approximately 19,042 (16,136 FTE) has been an important step toward creating a climate conducive to facilitating fundamental change. Examples of such change include building collaborations among faculty within and across departments, establishing the identity of students as part of a community beyond their chosen major, improving the efficiency and effectiveness of university systems, and perhaps most importantly, developing a framework to think deliberately about ways to effect change. This paper is …


Enhanced Dna Sensing Via Catalytic Aggregation Of Gold Nanoparticles, Herbert M. Huttanus, Elton Graugnard, Bernard Yurke, William B. Knowlton, Wan Kuang, William L. Hughes, Jeunghoon Lee Dec 2013

Enhanced Dna Sensing Via Catalytic Aggregation Of Gold Nanoparticles, Herbert M. Huttanus, Elton Graugnard, Bernard Yurke, William B. Knowlton, Wan Kuang, William L. Hughes, Jeunghoon Lee

Materials Science and Engineering Faculty Publications and Presentations

A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain reaction into gold nanoparticles was designed and tested. While direct aggregation forms an inter-particle linkagefrom only one target DNA strand, catalytic aggregation forms multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The changes in their absorption spectra were measured at different times and target concentrations and compared against direct aggregation. Catalytic aggregation showed a multifold increase in sensitivity at low target concentrations when compared to direct aggregation. Gelelectrophoresis was performed to compare DNA hybridization reactions …


Operation Of A Dna-Based Autocatalytic Network In Serum, Elton Graugnard, Amber Cox, Jeunghoon Lee, Cheryl Jorcyk, Bernard Yurke, William L. Hughes Jan 2011

Operation Of A Dna-Based Autocatalytic Network In Serum, Elton Graugnard, Amber Cox, Jeunghoon Lee, Cheryl Jorcyk, Bernard Yurke, William L. Hughes

Materials Science and Engineering Faculty Publications and Presentations

The potential for inferring the presence of cancer by the detection of miRNA in human blood has motivated research into the design and operation of DNA-based chemical amplifiers that can operate in bodily fluids. As a first step toward this goal, we have tested the operation of a DNA-based autocatalytic network in human serum and mouse serum. With the addition of sodium dodecyl sulfate to prevent degradation by nuclease activity, the network was found to operate successfully with both DNA and RNA catalysts.


Programmable Periodicity Of Quantum Dot Arrays With Dna Origami Nanotubes, Hieu Bui, Craig Onodera, Carson Kidwell, Yerpeng Tan, Elton Graugnard, Wan Kuang, Jeunghoon Lee, William B. Knowlton, Bernard Yurke, William L. Hughes Sep 2010

Programmable Periodicity Of Quantum Dot Arrays With Dna Origami Nanotubes, Hieu Bui, Craig Onodera, Carson Kidwell, Yerpeng Tan, Elton Graugnard, Wan Kuang, Jeunghoon Lee, William B. Knowlton, Bernard Yurke, William L. Hughes

Materials Science and Engineering Faculty Publications and Presentations

To fabricate quantum dot arrays with programmable periodicity, functionalized DNA origami nanotubes were developed. Selected DNA staple strands were biotin-labeled to form periodic binding sites for streptavidin-conjugated quantum dots. Successful formation of arrays with periods of 43 and 71 nm demonstrates precise, programmable, large-scale nanoparticle patterning; however, limitations in array periodicity were also observed. Statistical analysis of AFM images revealed evidence for steric hindrance or site bridging that limited the minimum array periodicity.


Kinetics Of Dna And Rna Hybridization In Serum And Serum-Sds, Elton Graugnard, Amber Cox, Jeunghoon Lee, Cheryl Jorcyk, Bernard Yurke, William L. Hughes Sep 2010

Kinetics Of Dna And Rna Hybridization In Serum And Serum-Sds, Elton Graugnard, Amber Cox, Jeunghoon Lee, Cheryl Jorcyk, Bernard Yurke, William L. Hughes

Materials Science and Engineering Faculty Publications and Presentations

Cancer is recognized as a serious health challenge both in the United States and throughout the world. While early detection and diagnosis of cancer leads to decreased mortality rates, current screening methods require significant time and costly equipment. Recently, increased levels of certain micro-ribonucleic acids (miRNAs) in the blood have been linked to the presence of cancer. While blood-based biomarkers have been used for years in cancer detection, studies analyzing trace amounts of miRNAs in blood and serum samples are just the beginning. Recent developments in deoxyribonucleic acid (DNA) nanotechnology and DNA computing have shown that it is possible to …


Limitations Of Poole–Frenkel Conduction In Bilayer Hfo2/Sio2 Mos Devices, Richard G. Southwick Iii, Justin Reed, Christopher Buu, Ross Butler, Gennadi Bersuker, William B. Knowlton Jun 2010

Limitations Of Poole–Frenkel Conduction In Bilayer Hfo2/Sio2 Mos Devices, Richard G. Southwick Iii, Justin Reed, Christopher Buu, Ross Butler, Gennadi Bersuker, William B. Knowlton

Materials Science and Engineering Faculty Publications and Presentations

The gate leakage current of metal–oxide– semiconductors (MOSs) composed of hafnium oxide (HfO2) exhibits temperature dependence, which is usually attributed to the standard Poole–Frenkel (P–F) transport model. However, the reported magnitudes of the trap barrier height vary significantly. This paper explores the fundamental challenges associated with applying the P–F model to describe transport in HfO2/SiO2 bilayers in n/p MOS field-effect transistors composed of 3- and 5-nm HfO2 on 1.1-nm SiO2 dielectric stacks. The extracted P–F trap barrier height is shown to be dependent on several variables including the following: the temperature range, method …


Recent Advances In High Density Area Array Interconnect Bonding For 3d Integration, J. M. Lannon, J., C. Gregory, M. Lueck, A. Huffman, D. Temple, Amy J. Moll, William B. Knowlton Apr 2010

Recent Advances In High Density Area Array Interconnect Bonding For 3d Integration, J. M. Lannon, J., C. Gregory, M. Lueck, A. Huffman, D. Temple, Amy J. Moll, William B. Knowlton

Materials Science and Engineering Faculty Publications and Presentations

The demand for more complex and multifunctional micro systems with enhanced performance characteristics for military applications is driving the electronics industry toward the use of best-of-breed materials and device technologies. Threedimensional (3-D) integration provides a way to build complex microsystems through bonding and interconnection of individually optimized device layers without compromising system performance and fabrication yield. Bonding of device layers can be achieved through polymer bonding or metal-metal interconnect bonding with a number of metalmetal systems. RTI has been investigating and characterizing Cu-Cu and CulSn-Cu processes for high density area array imaging applications, demonstrating high yield bonding between sub-I5 11m …


On The Thermal Activation Of Negative Bias Temperature Instability, Richard G. Southwick Iii, William B. Knowlton, Ben Kaczer, Tibor Grasser Oct 2009

On The Thermal Activation Of Negative Bias Temperature Instability, Richard G. Southwick Iii, William B. Knowlton, Ben Kaczer, Tibor Grasser

Materials Science and Engineering Faculty Publications and Presentations

The temperature dependence of negative bias temperature instability (NBTI) is investigated on 2.0nm SiO2 devices from temperatures ranging from 300K down to 6K with a measurement window of ~12ms to 100s. Results indicate that classic NBTI degradation is observed down to ~200K and rarely observed at temperatures below 140K in the experimental window. Since experimental results show the charge trapping component contributing to NBTI is thermally activated, the results cannot be explained with the conventionally employed elastic tunneling theory. A new mechanism is observed at temperatures below 200K where device performance during stress conditions improves rather than degrades with …


Photonic Band Tuning In 2d Photonic Crystals By Atomic Layer Deposition, Elton Graugnard, Davy P. Gaillot, Simon N. Dunham, Curtis W. Neff, Tsuyoshi Yamashita, Christopher J. Summers Oct 2006

Photonic Band Tuning In 2d Photonic Crystals By Atomic Layer Deposition, Elton Graugnard, Davy P. Gaillot, Simon N. Dunham, Curtis W. Neff, Tsuyoshi Yamashita, Christopher J. Summers

Materials Science and Engineering Faculty Publications and Presentations

Atomic layer deposition (ALD) has become a powerful tool for the fabrication of high quality 3-dimentional photonic crystals (PCs) from both inorganic (opal) and organic (holographically patterned polymer) templates [1,2]. With ALD, highly conformal films can be grown with a precision of 0.05 nm, which, when combined with the availability of a wide range of low temperature film growth protocols, enables a high degree of control over material and structural properties to precisely tune optical properties [3]. Two-dimensional photonic crystals have been developed extensively for applications in optical interconnects, beam steering, and sensor devices; and are predominantly fabricated by electron-beam …