Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 234

Full-Text Articles in Engineering

The Effects Of A Porous Internal Lattice Design On The Articular Contact Mechanics Of Radial Head Hemiarthroplasty Implants, Jessica Benitah Mar 2022

The Effects Of A Porous Internal Lattice Design On The Articular Contact Mechanics Of Radial Head Hemiarthroplasty Implants, Jessica Benitah

Electronic Thesis and Dissertation Repository

Hemiarthroplasty, where one side of a joint is replaced, is a minimally invasive procedure. It allows for the preservation of native tissue, though a significant ramification is accelerated cartilage wear when articulating with high stiffness materials that do not mimic the mechanical stiffness of the native tissue. An implant that employs a lattice design can significantly lower the stiffness of a solid structure whilst maintaining strength. This study was conducted to investigate the effect of implementing a porous internal lattice structure with a thin outer shell on the articular contact mechanics, using a radial head hemiarthroplasty. It was hypothesized that …


The Role Of Transient Vibration Of The Skull On Concussion, Rodrigo Dalvit Carvalho Da Silva Mar 2022

The Role Of Transient Vibration Of The Skull On Concussion, Rodrigo Dalvit Carvalho Da Silva

Electronic Thesis and Dissertation Repository

Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head that affects brain function. The maximum mechanical impedance of the brain tissue occurs at 450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head, vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates, like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When the skull vibrates, the force spreads directly to …


The Influence Of Frontal And Axial Plane Deformities On Contact Mechanics During Squatting: A Finite Element Study, Yidan Xu Jan 2022

The Influence Of Frontal And Axial Plane Deformities On Contact Mechanics During Squatting: A Finite Element Study, Yidan Xu

Electronic Thesis and Dissertation Repository

Knee Osteoarthritis (KOA) is a degenerative joint disease and a leading cause of disability worldwide. Lower limb malalignment was a risky factor leading to KOA, altering the load distributions. This study aimed to study the influence of knee deformities on knee contact mechanics and knee kinematics during squatting. A full-leg squat FE model was developed based on general open-source models and validated with in vivo studies to investigate the outputs under frontal malalignment (valgus 8° to varus 8°) and axial malalignment (miserable malalignment 30°). As a result, Varus-aligned and miserable aligned models increased medial tibiofemoral force and lateral patellar contact …


An Investigation Of Porous Materials For The Capture Of Concentrated Solar Energy, Elizabeth Blokker Jan 2022

An Investigation Of Porous Materials For The Capture Of Concentrated Solar Energy, Elizabeth Blokker

Electronic Thesis and Dissertation Repository

Fossil fuel usage is resulting in climate change. There is a need to switch to renewable energies, but existing technologies lack the efficiency for wide-scale adoption. Concentrating solar energy to a receiver using a parabolic reflector is an efficient method of converting sunlight into thermal energy at a high efficiency. Current receivers suffer efficiency challenges due to significant re-radiation losses as they reach a high temperature at the front surface. This project is focused on the creation of a computational model to simulate the radiation heat transfer in porous geometries, which can be used to optimize the geometric properties of …


Experimental Simulation Of Tornado-Like Vortices And Their Impact On High-Rise Buildings, Arash Ashrafi Oct 2021

Experimental Simulation Of Tornado-Like Vortices And Their Impact On High-Rise Buildings, Arash Ashrafi

Electronic Thesis and Dissertation Repository

One of the most crucial research areas in wind engineering is tornadoes due to the widespread damages to infrastructure and the environment in North America and other parts of the world. The proper scaling of tornadoes in experimental facilities, generating tornado-like vortices (TLVs) is, therefore, an essential part of evaluating tornado-indued damages on engineered buildings. The capability of producing TLVs of length scales in the range between 1:300 and 1:150 inside the Wind Engineering, Energy and Environment (WindEEE) Dome at Western University has already been demonstrated using only one mode of the full potential of this simulator. A new mode …


Significance Of The Vehicle Front Design And Gait Postures On Traumatic Brain Injuries Sustained By Different Pedestrian Populations During Car-To-Pedestrian Collisions (Cpcs) - A Computational Approach, Thava Kalishwara Kumar Gunasekaran Oct 2021

Significance Of The Vehicle Front Design And Gait Postures On Traumatic Brain Injuries Sustained By Different Pedestrian Populations During Car-To-Pedestrian Collisions (Cpcs) - A Computational Approach, Thava Kalishwara Kumar Gunasekaran

Electronic Thesis and Dissertation Repository

With the increasing prevalence of traumatic brain injuries (TBIs) in road traffic accidents (RTAs), it was identified that the shape of the vehicle's front end and pedestrian postures prior to impact significantly influence pedestrian head injuries. However, the effect of vehicle front shape parameters and gait postures on TBIs sustained in car-to-pedestrian collisions (CPCs) has yet to be quantified. This study used a computational approach to analyze the effect of vehicle shape parameters and pedestrian gait postures on pedestrian TBI risks across a diverse pedestrian population with varying body sizes. Our findings indicate that vehicle shape parameter such as BLEH …


Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz Oct 2021

Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz

Electronic Thesis and Dissertation Repository

When a laminar inclined circular jet impinges on a horizontal surface, it forms a non-circular hydraulic jump governed by a non-axisymmetric flow. In this thesis, we use the boundary-layer and thin-film approaches in the three dimensions to theoretically analyse such flow and the hydraulic jumps produced in such cases. We particularly explore the interplay among inertia, gravity, and the effective inclination angle on the non-axisymmetric flow.

The boundary-layer height is found to show an azimuthal dependence at strong gravity level only; however, the thin film thickness as well as the hydraulic jump profile showed a strong non-axisymmetric behaviour at all …


Numerical Simulation And Scaling Of Thunderstorm Downburst Outflows, Cristiano Andre Rodrigues Kondo Sep 2021

Numerical Simulation And Scaling Of Thunderstorm Downburst Outflows, Cristiano Andre Rodrigues Kondo

Electronic Thesis and Dissertation Repository

A downburst is a natural phenomenon that occurs during thunderstorms, creating hazards and damage to infrastructure due to the strong winds produced. This research contributes to the current literature by applying the Lundgren et al. scaling parameters (R0, T0, V0) to scale cooling source (CS) downburst simulations. The research also investigates the effects of the environmental lapse rate (ELR) on full-scale downburst outflows and compares the full-cloud model with the subcloud model simulations. The results showed that the scaling parameters preserve the temporal and vertical radial wind speed profile shape, as well as the …


Complicating Factors In Hydraulic Jumps: The Effects Of Earth's Rotation, Muveno Pascoal Elias Mucaza Sep 2021

Complicating Factors In Hydraulic Jumps: The Effects Of Earth's Rotation, Muveno Pascoal Elias Mucaza

Electronic Thesis and Dissertation Repository

Hydraulic jumps at the interface of stratified rotating fluids are studied. The flow is de- fined with continuous density and velocity profiles, with the velocity in each layer changing (upstream shear). The study is conducted in jumps defined by an imposed velocity transition, and jumps developing over a topography.

The numerical simulations conducted showed the qualitative structure of the flow changing in the cross-width direction, as well as the size and amount of turbulence of the jumps. Mixing in these jumps was shown to increase towards the side of the domain where the jumps were larger and more turbulent. The …


Data And Sensor Fusion Using Fmg, Semg And Imu Sensors For Upper Limb Prosthesis Control, Jason S. Gharibo Aug 2021

Data And Sensor Fusion Using Fmg, Semg And Imu Sensors For Upper Limb Prosthesis Control, Jason S. Gharibo

Electronic Thesis and Dissertation Repository

Whether someone is born with a missing limb or an amputation occurs later in life, living with this disability can be extremely challenging. The robotic prosthetic devices available today are capable of giving users more functionality, but the methods available to control these prostheses restrict their use to simple actions, and are part of the reason why users often reject prosthetic technologies. Using multiple myography modalities has been a promising approach to address these control limitations; however, only two myography modalities have been rigorously tested so far, and while the results have shown improvements, they have not been robust enough …


Significance Of The Neck In Concussive Head Impacts – A Computational Approach, Sakib Ul Islam Aug 2021

Significance Of The Neck In Concussive Head Impacts – A Computational Approach, Sakib Ul Islam

Electronic Thesis and Dissertation Repository

With the rising concern of concussions in contact sports, it is believed that cervical muscles could play a vital role in attenuating force to the head. However, the biomechanical effect of cervical muscles on head and brain response is not clearly understood. This study adopted a finite element head and neck model to replicate football impacts under various loading conditions to study the effect of neck muscles on head kinematics. Our results indicate that neck muscles have the highest amount of internal energy absorption in early impact, particularly at the time when peak head kinematics develop. Both deep and superficial …


A Multi-Level Mechanical Assessment Of The Shoulder Coupled With Evaluation Of Upper Extremity Predictive Finite Element Models, Jonathan Kusins Aug 2021

A Multi-Level Mechanical Assessment Of The Shoulder Coupled With Evaluation Of Upper Extremity Predictive Finite Element Models, Jonathan Kusins

Electronic Thesis and Dissertation Repository

Research involving joint mechanics is typically conducted at the macroscopic level. However, joints and joint replacements often fail because load transfer at the microscopic level is not well understood. This gap in knowledge reduces our ability to preoperatively predict patient outcomes and assess irreversible failure modes for a variety of surgical interventions prior to clinical adoption. The present work aims to advance full-field experimental measurement techniques applied to better understand the internal load transfer of the human shoulder joint by simultaneously combining mechanical testing protocols, microCT imaging, and digital volume correlation (DVC) methods.

A CT-compatible loading apparatus was fabricated to …


3d Printing Technology Applied In Lithium Metal Batteries: From Liquid To Solid., Xuejie Gao Aug 2021

3d Printing Technology Applied In Lithium Metal Batteries: From Liquid To Solid., Xuejie Gao

Electronic Thesis and Dissertation Repository

Li-metal batteries are strongly considered to be one of the most promising candidates for high energy density energy storage devices in our modern society. However, the state-of-the-art Limetal batteries are still limited by several challenges including 1) low energy/power density; 2) Li dendrite growth; 3) low coulombic efficiency, and 4) safety concerns within the liquid electrolyte. This thesis mainly focuses on addressing these challenges by using a 3D printing technique to realize high energy/power density Li-metal batteries.

A self-standing high areal energy density cathode for Li-S battery was developed by the 3D printing method in the first part. The optimized …


Biomaterial For Cervical Intervertebral Disc Prosthesis, Helium Mak Aug 2021

Biomaterial For Cervical Intervertebral Disc Prosthesis, Helium Mak

Electronic Thesis and Dissertation Repository

Recent long-term follow-up studies have shown that the cervical disc arthroplasty treatment have potentials in developing surrounding heterotopic ossification (HO). While its cause requires further investigation, this thesis has hypothesized that it may be the result of the continual remodeling of the injured vertebrae caused by the prostheses with smaller footprints introducing abnormal stresses. The research objective of this thesis is to develop a new prosthesis material that can be molded into any form conforming to the size and shape of the end-plates of the affected patient vertebrae. For prototype development, a composite material consisting of 10wt% polyvinyl alcohol cryogel …


Development Of Advanced Solid-State Electrolytes And Interfaces For High-Performance Sulfide-Based All-Solid-State Lithium Batteries, Feipeng Zhao Aug 2021

Development Of Advanced Solid-State Electrolytes And Interfaces For High-Performance Sulfide-Based All-Solid-State Lithium Batteries, Feipeng Zhao

Electronic Thesis and Dissertation Repository

All-solid-state lithium batteries (ASSLBs) have become increasingly attractive due to the demand of high-energy-density and high-safety lithium-ion batteries for electric vehicles (EVs). As the core component of ASSLBs, solid-state electrolytes (SSEs) are regarded as essential to determine the electrochemical performance of ASSLBs. The inorganic SSEs is one of the most important categories in all developed SSEs, representing the advance of superionic lithium conductors as well as the cornerstone to construct flexible polymer/inorganic composite SSEs. The sulfide-based inorganic SSE is one of the most promising SSEs that is receiving a lot of attentions, because only sulfide SSEs can show ultrahigh ionic …


Nonlinear Dynamics Of A Class Of Ring-Based Angular Rate Sensing And Energy Harvesting Systems, Ibrahim F Abdelhamid Gebrel Aug 2021

Nonlinear Dynamics Of A Class Of Ring-Based Angular Rate Sensing And Energy Harvesting Systems, Ibrahim F Abdelhamid Gebrel

Electronic Thesis and Dissertation Repository

This research is classified into two broad sections: ring-based MEMS (Micro-electro Mechanical Systems) and macro gyroscopes and novel bi-stable/monostable nonlinear energy harvesting systems. In both cases, models and solution methods are based on ring structural dynamics considering comprehensive nonlinear formulations. The investigation of nonlinear and linear dynamic response behavior of MEMS and macro ring gyroscopes forms the basis of the first study. This class of MEMS/macro ring-based vibratory gyroscopes requires oscillatory nonlinear electrostatic/electromagnetic excitation forces for their operation. The partial differential equations that govern the ring dynamics are reduced to a set of coupled nonlinear ordinary differential equations by assuming …


Investigation Of Small Remotely Piloted Aircraft System (Srpas) To Human Head Impact, Yuhu Weng Jul 2021

Investigation Of Small Remotely Piloted Aircraft System (Srpas) To Human Head Impact, Yuhu Weng

Electronic Thesis and Dissertation Repository

Small remotely piloted aircraft system (sRPAS) to ground human head impact could cause injuries to the public. Skull fractures and brain injuries have been observed in sRPAS-related impacts, which varied in angles, locations and velocities. This study developed a representative quadcopter sRPAS finite element model and incorporated it with THUMS ver 4.02 50th percentile male and 5th percentile small female models to simulate sRPAS to human head impacts. The simulations were validated with cadaver experiments. The common injury metrics such as head injury criteria (HIC) and brain injury criterion (BrIC) were correlated with head injury-related responses such as …


Developing Multi-Species Brain-Strain-Based Scaling Law Using Finite Element Analysis., Xingyu Liu Jul 2021

Developing Multi-Species Brain-Strain-Based Scaling Law Using Finite Element Analysis., Xingyu Liu

Electronic Thesis and Dissertation Repository

To better understand traumatic brain injury (TBI), various laboratory animal experiments have been developed. However, there lacks an effective scaling to connect animal TBI models with human brain injuries. With the help of the finite element (FE) model, brain mechanical responses such as strains can be predicted, and hence can serve as a parameter to facilitate animal to human scaling, as these tissue-level strains directly link to neuronal damage. In this thesis, first, a comprehensive comparison of brain strains between animal TBI models and human TBI cases was conducted. Then, a brain-strain-based scaling law between mouse and human was developed, …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Material Property Characterization For Elastomers Within The Framework Of Finite-Deformation Viscoelasticity, Shan Gao Jun 2021

Material Property Characterization For Elastomers Within The Framework Of Finite-Deformation Viscoelasticity, Shan Gao

Electronic Thesis and Dissertation Repository

Elastomers are polymeric materials that consist of highly mobile long-molecule chains jointed together through crosslinking. The behavior of elastomers is commonly manifested by hyperelasticity and viscosity due to their molecular structure. Any variation of the material microstructure may have an impact on the macroscopic properties of elastomers. Therefore, characterizing the material properties of elastomers with appropriate constitutive models is essential to facilitating their potential applications. Although various constitutive models have been developed to describe the hyperelastic and viscoelastic behaviors of elastomers, it is still challenging to quantify the material properties of elastomers since there exist restrictions and limitations of the …


Biomechanical Analysis Of Commotio Cordis In Children's Baseball - A Computational Approach, Grant J. Dickey Jun 2021

Biomechanical Analysis Of Commotio Cordis In Children's Baseball - A Computational Approach, Grant J. Dickey

Electronic Thesis and Dissertation Repository

Commotio cordis is the second leading cause of cardiac death in young athletes. This rare sudden-death mechanism most commonly affects young children playing baseball. It is caused by impacts to the chest during the repolarization phase of the cardiac cycle, which causes the heart to go into ventricular fibrillation, often leading to death. This study adopted the detailed and validated CHARM-10 child finite element model to replicate commotio cordis instances by simulating baseball impacts to the chest. New commotio cordis injury metrics were developed to create a more accurate prediction for chest protector effectiveness. The conventionally used injury metrics for …


Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone May 2021

Development Of A Wearable Haptic Feedback Device For Upper Limb Prosthetics Through Sensory Substitution, Marco B.S. Gallone

Electronic Thesis and Dissertation Repository

Haptics can enable a direct communication pipeline between the artificial limb and the brain; adding haptic sensory feedback for prosthesis wearers is believed to improve operation without drawing too much of the user's attention. Through neuroplasticity, the brain can become more cognizant of the information delivered through the skin and may eventually interpret it as inherently as other natural senses. In this thesis, a wearable haptic feedback device (WHFD) is developed to communicate prosthesis sensory information. A 14-week, 6-stage, between subjects study was created to investigate the learning trajectory as participants were stimulated with haptic patterns conveying joint proprioception. 37 …


Integrated Modelling Of Wastewater Treatment And Sewer Processes - Interactions Of Fluid Flow, Mass Transfer, And Biochemical Reactions, Ahmed Khalil Apr 2021

Integrated Modelling Of Wastewater Treatment And Sewer Processes - Interactions Of Fluid Flow, Mass Transfer, And Biochemical Reactions, Ahmed Khalil

Electronic Thesis and Dissertation Repository

Numerical modelling of wastewater management systems is crucial for investigating alternative designs and developing strategies for operation and control that improve the performance of the treatment stage (such as improving the aeration systems in activated sludge systems). Modelling can also help operators to mitigate common problems that arise from unwanted biochemical conversions in the sewer networks (such as the production of sulfide and methane). Therefore, this work focuses on two major areas related to modelling wastewater management systems. First, it seeks to develop more accurate models for aeration systems in activated sludge reactors. Second, it seeks to study the mathematical …


Effect Of Ion Implantation On Mechanical Properties And Kinetic Deformation Mechanisms In Inconel X-750, Loabat Shojaei-Kavan Mar 2021

Effect Of Ion Implantation On Mechanical Properties And Kinetic Deformation Mechanisms In Inconel X-750, Loabat Shojaei-Kavan

Electronic Thesis and Dissertation Repository

The recent mechanical tests on the ex-service Inconel X-750 spacers have indicated significant embrittlement and reduced load carrying capacity compared to as installed condition. This is an immense safety concern to the nuclear industry, as in-service spacer examination and their replacement within fuel channels are very costly and impractical. The primary degradation mechanism is complex, and thus provides the focus of the current investigation. Despite few previous reports about hardness of non-irradiated and irradiated Inconel X-750, thermally-activated time-dependent deformation conditions have not been studied. This dissertation has attempted to overcome this scarcity of data by providing a series of fundamental …


Metallization Process For 3d Printed Electronics: From I3dp Ii To 3d Co-Printing Technology, Junfeng Xiao Feb 2021

Metallization Process For 3d Printed Electronics: From I3dp Ii To 3d Co-Printing Technology, Junfeng Xiao

Electronic Thesis and Dissertation Repository

3D printing has emerged as a powerful additive manufacturing technique and becomes as a viable alternative to conventional manufacturing processes in an increasing number of applications. Thus, the development of printable materials also continues to expand, while polymers are still the most utilized materials in 3D printing. There is a great advance for developing polymers with versatile mechanical and chemical properties. However, the end-use products are demanding various functions. It is imperative to develop functional 3D printed polymeric materials to achieve enhanced functionalities.

Usually, one polymer can meet one specific application. This has considerably limited the capability of 3D printing …


Experimental Simulation Of A Density-Driven Downburst Translating Within A Turbulent Boundary Layer, Shivani Ashitkumar Jariwala Feb 2021

Experimental Simulation Of A Density-Driven Downburst Translating Within A Turbulent Boundary Layer, Shivani Ashitkumar Jariwala

Electronic Thesis and Dissertation Repository

Downburst outflows emerging from thunderstorm producing clouds are contained within the atmosphere where the outflow interacts with the preexisting atmospheric boundary layer (ABL). This novel study employs a realistic approach for experimental simulation of downbursts by translating the downburst source within a scaled ABL within a hydraulic flume system that produces open channel flow. The density-driven model approach is used, involving an iris operated cylinder release mechanism translating inside the ABL generated over a restrictive fetch using passive turbulence generating devices at model scales of 1:5500 and 1:10,000. The velocity vector fields across a vertical plane revealed asymmetrical outflows generated …


Finite Element Analysis Of Assembly For Warped Composite Automotive Components, Theogenes De Oliveira Maia Feb 2021

Finite Element Analysis Of Assembly For Warped Composite Automotive Components, Theogenes De Oliveira Maia

Electronic Thesis and Dissertation Repository

One of the most used processes in the automotive industry is the moulding of parts made of thermoplastics filled with glass fibres. This research focused on a specific material: long fibre thermoplastics (LFT). On the one hand, the performance gain, in terms of lightweight and the strength of final components, justifies its wide use. On the other hand, due to the intrinsic characteristics of part manufacturing, warpage is evident and can influence or even compromise subsequent stages of production.

This research has three main objectives: recreate in the most faithfully way, in AbaqusTM environment, the conditions that precede the …


Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang Jan 2021

Design, Development, And Evaluation Of Customized Electronics For Controlling A 5-Dof Magneto-Rheological Actuator Collaborative Robot, Ziqi Yang

Electronic Thesis and Dissertation Repository

In recent years, Magneto-Rheological (MR) fluids has been used in various fields such as robotics, automotive, aerospace, etc. The most common use of the MR fluids is within a clutch-like mechanism, namely an MR clutch. When mechanical input is coupled to the input part of the MR clutch, the MR clutch provides a means of delivering this mechanical input to its output, through the MR fluids. The combination of the mechanical input device and the MR clutch is called an MR actuator. The MR actuator features inherently compliance owing to the characteristic of the MR fluids while also offering higher …


Geometry Optimization Of Building-Integrated Photovoltaic Sunshade, Seyedsoroush Sadatifar Dec 2020

Geometry Optimization Of Building-Integrated Photovoltaic Sunshade, Seyedsoroush Sadatifar

Electronic Thesis and Dissertation Repository

Building-integrated photovoltaic (BIPV) systems are one of the growing applications of PV technology. These approaches allow PV panels to perform additional functions for the building, such as regulating interior lighting and incoming heat. In this work, we explore a design framework for optimizing the configuration of BIPV shading devices to optimize a combination of power generation, daylighting conditions within the building, and heating and cooling loads.

We develop a generalizable computational model and apply it to a case study for the Cornerstone Architecture Building in London, Ontario. We optimize the configuration of static and dynamic BIPV shading devices in both …


Experimental Investigation Of Inverse Liquid-Solid Fluidized Bed Hydrodynamics, Saleh A. Srabet Dec 2020

Experimental Investigation Of Inverse Liquid-Solid Fluidized Bed Hydrodynamics, Saleh A. Srabet

Electronic Thesis and Dissertation Repository

Abstract

Inverse liquid-solid fluidized beds have recently received increased attention, particularly for use with wastewater treatment bioreactors (i.e., particle-supported biofilms). The flow behaviour of free-rising light particles is especially interesting because their drag coefficients deviate from the standard drag curve. For this reason, the work presented in this thesis was focussed on investigating the minimum fluidization velocity () and the steady-state bed voidage associated with four particles, with densities of 28, 122, 300, and 678 kg/m3, in a conventional inverse fluidization regime. All experimental measurements were completed using a large-scale system comprising a downer column with a diameter …